9 research outputs found

    An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls

    Get PDF
    Xylan and cellulose are abundant polysaccharides in vascular plants and essential for secondary cell wall strength. Acetate or glucuronic acid decorations are exclusively found on even-numbered residues in most of the glucuronoxylan polymer. It has been proposed that this even-specific positioning of the decorations might permit docking of xylan onto the hydrophilic face of a cellulose microfibril. Consequently, xylan adopts a flattened ribbon-like twofold helical screw conformation when bound to cellulose in the cell wall. Here we show that ESKIMO1/XOAT1/TBL29, a xylan-specific O-acetyltransferase, is necessary for generation of the even pattern of acetyl esters on xylan in Arabidopsis. The reduced acetylation in the esk1 mutant deregulates the position-specific activity of the xylan glucuronosyltransferase GUX1, and so the even pattern of glucuronic acid on the xylan is lost. Solid-state NMR of intact cell walls shows that, without the even-patterned xylan decorations, xylan does not interact normally with cellulose fibrils. We conclude that the even pattern of xylan substitutions seen across vascular plants therefore enables the interaction of xylan with hydrophilic faces of cellulose fibrils, and is essential for development of normal plant secondary cell walls.This work was part supported by the Leverhulme Trust grant for the Centre for Natural Material Innovation. J.W.-R., J.J.L. and O.M.T. are supported by studentships from Conicyt Chile and the Cambridge Trusts, the BBSRC Doctoral Training Partnership BB/J014540/1, and a BBSRC Novozymes iCASE award (BB/M015432/1) respectively. We thank K. B. Krogh for co-supervision of O.M.T. The UK 850 MHz solid-state NMR Facility used in this research was funded by EPSRC and BBSRC (Contract reference PR140003), as well as the University of Warwick including via part funding through Birmingham Science City Advanced Materials Projects 1 and 2 supported by Advantage West Midlands (AWM) and the European Regional Development Fund (ERDF)

    Loss of function of the carbon catabolite repressor CreA leads to low but inducer‐independent expression from the feruloyl esterase B promoter in Aspergillus niger

    Get PDF
    OBJECTIVE: With the aim to decipher the mechanisms involved in the transcriptional regulation of feruloyl esterase encoded by faeB, a genetic screen was performed to isolate A. niger mutants displaying inducer-independent expression from the faeB promoter. RESULT: PfaeB-amdS and PfaeB-lux dual reporter strains were constructed and used to isolate trans-acting mutants in which the expression of both reporters was increased, based on the ability to grow on acetamide plates and higher luciferase activity, respectively. The genetic screen on the non-inducing carbon source D-fructose yielded in total 111 trans-acting mutants. The genome of one of the mutants was sequenced and revealed several SNPs, including a point mutation in the creA gene encoding a transcription factor known to be involved in carbon catabolite repression. Subsequently, all mutants were analyzed for defects in carbon catabolite repression by determining sensitivity towards allyl alcohol. All except four of the 111 mutants were sensitive to allyl alcohol, indicating that the vast majority of the mutants are defective in carbon catabolite repression. The creA gene of 32 allyl alcohol sensitive mutants was sequenced and 27 of them indeed contained a mutation in the creA gene. Targeted deletion of creA in the reporter strain confirmed that the loss of CreA results in constitutive expression from the faeB promoter. CONCLUSION: Loss of function of CreA leads to low but inducer-independent expression from the faeB promoter in A. niger. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10529-021-03104-2

    Ectopic callose deposition into woody biomass modulates the nano2 architecture of macrofibrils

    Get PDF
    Plant biomass plays an increasingly important role in the circular bioeconomy, replacing non-renewable fossil resources. Genetic engineering of this lignocellulosic biomass could benefit biorefinery transformation chains by lowering economic and technological barriers to industrial processing. However, previous efforts have mostly targeted the major constituents of woody biomass: cellulose, hemicellulose and lignin. Here we report the engineering of wood structure through the introduction of callose, a polysaccharide novel to most secondary cell walls. Our multiscale analysis of genetically engineered poplar trees shows that callose deposition modulates cell wall porosity, water and lignin contents and increases the lignin–cellulose distance, ultimately resulting in substantially decreased biomass recalcitrance. We provide a model of the wood cell wall nano-architecture engineered to accommodate the hydrated callose inclusions. Ectopic polymer introduction into biomass manifests in new physico-chemical properties and offers new avenues when considering lignocellulose engineering

    The influence of feedstock characteristics on enzyme production in Trichoderma reesei: a review on productivity, gene regulation and secretion profiles

    No full text
    corecore