478 research outputs found

    The Close AGN Reference Survey (CARS): Locating the [O III] wing component in luminous local Type 1 AGN

    Get PDF
    Context. The strong asymmetry in the optical [O III] λ5007 emission line is one of the best signatures of active galactic nuclei (AGN) driven warm (∼104 K) ionized gas outflows on host galaxy scales. While large spectroscopic surveys such as the sloan digital sky survey (SDSS) have characterized the kinematics of [O III] for large samples of AGN, estimating the associated energetics requires spatially resolving these outflows with, for example, integral field unit (IFU) studies. Aims. As part of the Close AGN Reference Survey, we obtained spatially resolved IFU spectroscopy for a representative sample of 39 luminous type 1 AGN at 0.01 < z < 0.06 with the multi unit spectroscopic explorer and the visible multi object spectrograph IFUs at the very large telescope to infer the spatial location of the ionized gas outflows. Methods. We compared the 2D light distributions of the [O III] wing to that of the Hβ broad emission line region, a classical point source (PSF). We then used the PSF to distinguish between the unresolved and resolved [O III] wing emission. We further determined its location using spectro-astrometry for the point-like sources. Results. The [O III] wing is spatially unresolved in 23 out of the 36 AGN with > 80% of the flux associated with a point-like source. We measured < 100 pc offsets in the spatial location of the outflow from the AGN nucleus using the spectro-astrometry technique for these sources. For the other 13 AGN, the [O III] wing emission is resolved and possibly extended on several kiloparsec scales. Conclusions. We conclude that [O III] wing emission can be compact or extended in an unbiased luminous AGN sample, where both cases are likely to appear. Electron density in the compact [O III] wing regions (median ne ∼ 1900 cm−3) is nearly a magnitude higher than in the extended ones (median ne ∼ 500 cm−3). The presence of spatially extended and compact [O III] wing emission is unrelated to the AGN bolometric luminosity and to inclination effects, which means other features such as time delays, or mechanical feedback (radio jets) may shape the ionized gas outflow properties

    Design and construction of the MicroBooNE Cosmic Ray Tagger system

    Get PDF
    The MicroBooNE detector utilizes a liquid argon time projection chamber (LArTPC) with an 85 t active mass to study neutrino interactions along the Booster Neutrino Beam (BNB) at Fermilab. With a deployment location near ground level, the detector records many cosmic muon tracks in each beam-related detector trigger that can be misidentified as signals of interest. To reduce these cosmogenic backgrounds, we have designed and constructed a TPC-external Cosmic Ray Tagger (CRT). This sub-system was developed by the Laboratory for High Energy Physics (LHEP), Albert Einstein center for fundamental physics, University of Bern. The system utilizes plastic scintillation modules to provide precise time and position information for TPC-traversing particles. Successful matching of TPC tracks and CRT data will allow us to reduce cosmogenic background and better characterize the light collection system and LArTPC data using cosmic muons. In this paper we describe the design and installation of the MicroBooNE CRT system and provide an overview of a series of tests done to verify the proper operation of the system and its components during installation, commissioning, and physics data-taking

    The MURALES survey. IV. Searching for nuclear outflows in 3C radio galaxies at z < 0.3 with MUSE observations

    Full text link
    We analyze VLT/MUSE observations of 37 radio galaxies from the Third Cambridge catalogue (3C) with redshift <<0.3 searching for nuclear outflows of ionized gas. These observations are part of the MURALES project (a MUse RAdio Loud Emission line Snapshot survey), whose main goal is to explore the feedback process in the most powerful radio-loud AGN. We applied a nonparametric analysis to the [O~III] λ\lambda5007 emission line, whose asymmetries and high-velocity wings reveal signatures of outflows. We find evidence of nuclear outflows in 21 sources, with velocities between ∼\sim400 - 1000 km s−1^{-1}, outflowing masses of ∼105−107\sim 10^5-10^7 M⊙_\odot, and a kinetic energy in the range ∼1053−1056\sim 10^{53} - 10^{56} erg. In addition, evidence for extended outflows is found in the 2D gas velocity maps of 13 sources of the subclasses of high-excitation (HEG) and broad-line (BLO) radio galaxies, with sizes between 0.4 and 20 kpc. We estimate a mass outflow rate in the range 0.4 - 30 M⊙_\odot yr−1^{-1} and an energy deposition rate of E˙kin∼1042−1045{\dot E}_{kin} \sim 10^{42}-10^{45} erg s−1^{-1}. Comparing the jet power, the nuclear luminosity of the active galactic nucleus, and the outflow kinetic energy rate, we find that outflows of HEGs and BLOs are likely radiatively powered, while jets likely only play a dominant role in galaxies with low excitation. The low loading factors we measured suggest that these outflows are driven by momentum and not by energy. Based on the gas masses, velocities, and energetics involved, we conclude that the observed ionized outflows have a limited effect on the gas content or the star formation in the host. In order to obtain a complete view of the feedback process, observations exploring the complex multiphase structure of outflows are required.Comment: 40 pages; accepted for publication on A&A

    Ionization Electron Signal Processing in Single Phase LArTPCs II. Data/Simulation Comparison and Performance in MicroBooNE

    Full text link
    The single-phase liquid argon time projection chamber (LArTPC) provides a large amount of detailed information in the form of fine-grained drifted ionization charge from particle traces. To fully utilize this information, the deposited charge must be accurately extracted from the raw digitized waveforms via a robust signal processing chain. Enabled by the ultra-low noise levels associated with cryogenic electronics in the MicroBooNE detector, the precise extraction of ionization charge from the induction wire planes in a single-phase LArTPC is qualitatively demonstrated on MicroBooNE data with event display images, and quantitatively demonstrated via waveform-level and track-level metrics. Improved performance of induction plane calorimetry is demonstrated through the agreement of extracted ionization charge measurements across different wire planes for various event topologies. In addition to the comprehensive waveform-level comparison of data and simulation, a calibration of the cryogenic electronics response is presented and solutions to various MicroBooNE-specific TPC issues are discussed. This work presents an important improvement in LArTPC signal processing, the foundation of reconstruction and therefore physics analyses in MicroBooNE.Comment: 54 pages, 36 figures; the first part of this work can be found at arXiv:1802.0870

    A Deep Neural Network for Pixel-Level Electromagnetic Particle Identification in the MicroBooNE Liquid Argon Time Projection Chamber

    Full text link
    We have developed a convolutional neural network (CNN) that can make a pixel-level prediction of objects in image data recorded by a liquid argon time projection chamber (LArTPC) for the first time. We describe the network design, training techniques, and software tools developed to train this network. The goal of this work is to develop a complete deep neural network based data reconstruction chain for the MicroBooNE detector. We show the first demonstration of a network's validity on real LArTPC data using MicroBooNE collection plane images. The demonstration is performed for stopping muon and a νμ\nu_\mu charged current neutral pion data samples

    Integrating geographical information in the Linked Digital Earth

    Full text link
    Many progresses have been made since the Digital Earth notion was envisioned thirteen years ago. However, the mechanism for integrating geographic information into the Digital Earth is still quite limited. In this context, we have developed a process to generate, integrate and publish geospatial Linked Data from several Spanish National data-sets. These data-sets are related to four Infrastructure for Spatial Information in the European Community (INSPIRE) themes, specifically with Administrative units, Hydrography, Statistical units, and Meteorology. Our main goal is to combine different sources (heterogeneous, multidisciplinary, multitemporal, multiresolution, and multilingual) using Linked Data principles. This goal allows the overcoming of current problems of information integration and driving geographical information toward the next decade scenario, that is, ?Linked Digital Earth.

    Identification of Loci Controlling Restriction of Parasite Growth in Experimental Taenia crassiceps Cysticercosis

    Get PDF
    Human neurocysticercosis (NC) caused by Taenia solium is a parasitic disease of the central nervous system that is endemic in many developing countries. In this study, a genetic approach using the murine intraperitoneal cysticercosis caused by the related cestode Taenia crassiceps was employed to identify host factors that regulate the establishment and proliferation of the parasite. A/J mice are permissive to T. crassiceps infection while C57BL/6J mice (B6) are comparatively restrictive, with a 10-fold difference in numbers of peritoneal cysticerci recovered 30 days after infection. The genetic basis of this inter-strain difference was explored using 34 AcB/BcA recombinant congenic strains derived from A/J and B6 progenitors, that were phenotyped for T. crassiceps replication. In agreement with their genetic background, most AcB strains (A/J-derived) were found to be permissive to infection while most BcA strains (B6-derived) were restrictive with the exception of a few discordant strains, together suggesting a possible simple genetic control. Initial haplotype association mapping using >1200 informative SNPs pointed to linkages on chromosomes 2 (proximal) and 6 as controlling parasite replication in the AcB/BcA panel. Additional linkage analysis by genome scan in informative [AcB55xDBA/2]F1 and F2 mice (derived from the discordant AcB55 strain), confirmed the effect of chromosome 2 on parasite replication, and further delineated a major locus (LOD = 4.76, p<0.01; peak marker D2Mit295, 29.7 Mb) that we designate Tccr1 (T. crassiceps cysticercosis restrictive locus 1). Resistance alleles at Tccr1 are derived from AcB55 and are inherited in a dominant fashion. Scrutiny of the minimal genetic interval reveals overlap of Tccr1 with other host resistance loci mapped to this region, most notably the defective Hc/C5 allele which segregates both in the AcB/BcA set and in the AcB55xDBA/2 cross. These results strongly suggest that the complement component 5 (C5) plays a critical role in early protective inflammatory response to infection with T. crassiceps

    MIF Participates in Toxoplasma gondii-Induced Pathology Following Oral Infection

    Get PDF
    BACKGROUND: Macrophage migration inhibitory factor (MIF) is essential for controlling parasite burden and survival in a model of systemic Toxoplasma gondii infection. Peroral T. gondii infection induces small intestine necrosis and death in susceptible hosts, and in many aspects resembles inflammatory bowel disease (IBD). Considering the critical role of MIF in the pathogenesis of IBD, we hypothesized that MIF participates in the inflammatory response induced by oral infection with T. gondii. METHODOLOGY/PRINCIPAL FINDINGS: Mif deficient (Mif(-/-)) and wild-type mice in the C57Bl/6 background were orally infected with T. gondii strain ME49. Mif(-/-) mice had reduced lethality, ileal inflammation and tissue damage despite of an increased intestinal parasite load compared to wt mice. Lack of MIF caused a reduction of TNF-α, IL-12, IFN-γ and IL-23 and an increased expression of IL-22 in ileal mucosa. Moreover, suppressed pro-inflammatory responses at the ileal mucosa observed in Mif(-/-) mice was not due to upregulation of IL-4, IL-10 or TGF-β. MIF also affected the expression of matrix metalloproteinase-9 (MMP-9) but not MMP-2 in the intestine of infected mice. Signs of systemic inflammation including the increased concentrations of inflammatory cytokines in the plasma and liver damage were less pronounced in Mif(-/-) mice compared to wild-type mice. CONCLUSION/SIGNIFICANCE: In conclusion, our data suggested that in susceptible hosts MIF controls T. gondii infection with the cost of increasing local and systemic inflammation, tissue damage and death
    • …
    corecore