220 research outputs found

    CCR7 in Blood Cancers – Review of Its Pathophysiological Roles and the Potential as a Therapeutic Target

    Get PDF
    According to the classical paradigm, CCR7 is a homing chemokine receptor that grants normal lymphocytes access to secondary lymphoid tissues such as lymph nodes or spleen. As such, in most lymphoproliferative disorders, CCR7 expression correlates with nodal or spleen involvement. Nonetheless, recent evidence suggests that CCR7 is more than a facilitator of lymphatic spread of tumor cells. Here, we review published data to catalogue CCR7 expression across blood cancers and appraise which classical and novel roles are attributed to this receptor in the pathogenesis of specific hematologic neoplasms. We outline why novel therapeutic strategies targeting CCR7 might provide clinical benefits to patients with CCR7-positive hematopoietic tumors

    Production of Z0 bosons in elastic and quasi-elastic ep collisions at HERA

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMThe production of Z0 bosons in the reaction ep →eZ0 p(∗), where p(∗) stands for a proton or a lowmass nucleon resonance, has been studied in ep collisions at HERA using the ZEUS detector. The analysis is based on a data sample collected between 1996 and 2007, amounting to 496 pb−1 of integrated luminosity. The Z0 was measured in the hadronic decay mode. The elasticity of the events was ensured by a cut on ηmax < 3.0, where ηmax is the maximum pseudorapidity of energy deposits in the calorimeter defined with respect to the proton beam direction. A signal was observed at the Z0 mass. The cross section of the reaction ep → eZ0 p(∗) was measured to be σ(ep → eZ0 p(∗)) =0.13 ± 0.06(stat.) ± 0.01(syst.) pb, in agreement with the Standard Model prediction of 0.16 pb. This is the first measurement of Z0 production in ep collisionsWe appreciate the contributions to the construction and maintenance of the ZEUS detector of many people who are not listed as authors. The HERA machine group and the DESY computing staff are especially acknowledged for their success in providing excellent operation of the collider and the data-analysis environment. We thank the DESY directorate for their strong support and encouragemen

    Search for the Higgs boson decays H → ee and H → eμ in pp collisions at √s = 13 TeV with the ATLAS detector

    Full text link
    Artículo escrito por un elevado número de autores, sólo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiera, y los autores pertenecientes a la UAMSearches for the Higgs boson decays H→eeand H→eμare performed using data corresponding to an integrated luminosity of 139 fb−1collected with the ATLAS detector in ppcollisions at √s=13 TeV at the LHC. No significant signals are observed, in agreement with the Standard Model expectation. For a Higgs boson mass of 125 GeV, the observed (expected) upper limit at the 95% confidence level on the branching fraction β(H→ee)is 3.6 ×10−4(3.5 ×10−4) and on β(H→eμ)is 6.2 ×10−5(5.9 ×10−5). These results represent improvements by factors of about five and six on the previous best limits on β(H→ee)and β(H→eμ)respectivelyWe acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, CRC and Compute Canada, Canada; COST, ERC, ERDF, Horizon 2020, and Marie Skłodowska-Curie Actions, European Union; Investissements d' Avenir Labex and Idex, ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya, Spain; The Royal Society and Leverhulme Trust, United Kingdo

    Comparison of Metagenomics and Metatranscriptomics Tools: A Guide to Making the Right Choice

    Get PDF
    The study of microorganisms is a field of great interest due to their environmental (e.g., soil contamination) and biomedical (e.g., parasitic diseases, autism) importance. The advent of revolutionary next-generation sequencing techniques, and their application to the hypervariable regions of the 16S, 18S or 23S ribosomal subunits, have allowed the research of a large variety of organisms more in-depth, including bacteria, archaea, eukaryotes and fungi. Additionally, together with the development of analysis software, the creation of specific databases (e.g., SILVA or RDP) has boosted the enormous growth of these studies. As the cost of sequencing per sample has continuously decreased, new protocols have also emerged, such as shotgun sequencing, which allows the profiling of all taxonomic domains in a sample. The sequencing of hypervariable regions and shotgun sequencing are technologies that enable the taxonomic classification of microorganisms from the DNA present in microbial communities. However, they are not capable of measuring what is actively expressed. Conversely, we advocate that metatranscriptomics is a “new” technology that makes the identification of the mRNAs of a microbial community possible, quantifying gene expression levels and active biological pathways. Furthermore, it can be also used to characterise symbiotic interactions between the host and its microbiome. In this manuscript, we examine the three technologies above, and discuss the implementation of different software and databases, which greatly impact the obtaining of reliable results. Finally, we have developed two easy-to-use pipelines leveraging Nextflow technology. These aim to provide everything required for an average user to perform a metagenomic analysis of marker genes with QIMME2 and a metatranscriptomic study using Kraken2/Bracken.regional Andalusian GovernmentPOSTDOC_21 _0039

    Combination of searches for WW, WZ, and ZZ resonances in pp collisions at √s=8 TeV with the ATLAS detector

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMThe ATLAS experiment at the CERN Large Hadron Collider has performed searches for new, heavy bosons decaying to WW, WZ and ZZ final states in multiple decay channels using 20.3 fb-1 of pp collision data at √s=8 TeV. In the current study, the results of these searches are combined to provide a more stringent test of models predicting heavy resonances with couplings to vector bosons. Direct searches for a charged diboson resonance decaying to WZ in the ℓνℓ'ℓ' (ℓ=μ, e), ℓℓqq-, ℓνqq- and fully hadronic final states are combined and upper limits on the rate of production times branching ratio to the WZ bosons are compared with predictions of an extended gauge model with a heavy W' boson. In addition, direct searches for a neutral diboson resonance decaying to WW and ZZ in the ℓℓqq-, ℓνqq-, and fully hadronic final states are combined and upper limits on the rate of production times branching ratio to the WW and ZZ bosons are compared with predictions for a heavy, spin-2 graviton in an extended Randall-Sundrum model where the Standard Model fields are allowed to propagate in the bulk of the extra dimensionWe acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azer-baijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Roma-nia; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Com-pute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Ac-tions, European Union; Investissements d’Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aris-teia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Lever-hulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) aneplad BNL (USA) and in the Tier-2 facilities worldwid

    Validación del Cuestionario de Subtipos Clínicos de Burnout BCSQ-36 en personal de Atención Primaria

    Get PDF
    Realizar un análisis factorial confirmatorio (AFC) y un análisis de fiabilidad del cuestionario de subtipos clínicos de burnout (BCSQ-36) tomando como muestra a personal sanitario de Atención Primaria de la provincia de Zaragoza. El cuestionario BCSQ-36, está diseñado para evaluar los subtipos de butnout: frenético, sin desafíos y desgastado. Hemos analizado, además, que patrones de asociación tienen los tres subtipos de burnout con los constructos: afecto positivo y negativo, autoestima basada en el rendimiento, injusticia percibida, mindfulness y resiliencia

    Comparación in vitro de la resistencia al cizallamiento en dentina de 6 sistemas adhesivos universales, multimodo o multipropósito

    Get PDF
    En este trabajo de investigación cuyo tema central es la adhesión en odontología, se ahondó encarecidamente en el tema de los “adhesivos universales” que es el tema medular de esta tesis. Por ello, es importante que el lector primeramente se familiarice acerca de todo lo que a adhesión se refiere para que posteriormente comprenda en su totalidad cual es el mecanismo por el cual los adhesivos universales se caracterizan. Este trabajo se realizó con la finalidad de que los cirujanos dentistas conozcan todas las características que poseen estos adhesivos, ya que como son relativamente nuevos en el mercado, existe poco conocimiento acerca de los usos, indicaciones, composición y forma de empleo de estos adhesivos de última generación. Es importante dar a conocer si existe o no, diferencia significativa de la resistencia a la fractura de los adhesivos universales que se pueden obtener para que el odontólogo tome buenas decisiones en el tratamiento odontológico de sus pacientes. Por lo que se realizó un estudio in vitro en dentina donde se evaluaron 6 sistemas adhesivos universales disponibles en México; Scotchbond Universal (3M ESPE), All-Bond Universal (Bisco), Gluma Bond Universal (Heraeus Kulzer), Tetric N-Bond Universal (Ivoclar-Vivadent), Futurabond U (VOCO), Peak Universal Bond (Ultradent) con el objetivo de comparar la resistencia al cizallamiento. Así mismo se empleó un grupo control que se realizó con un adhesivo convencional de cuarta generación, el estándar de oro OptiBond FL (Kerr), el cual ha sido objeto de comparación en muchas investigaciones.En la actualidad existe un amplio desconocimiento sobre el empleo de los sistemas adhesivos universales que han sido recientemente lanzados al mercado odontológico y junto con ello han surgido inquietudes acerca del uso, formulación química, indicaciones, y cuál es el adhesivo que muestra mejores niveles de adhesión. Objetivo: Comparar la resistencia in vitro al cizallamiento en dentina de 6 sistemas adhesivos universales, multimodo o multipropósito. Material y métodos: Los adhesivos universales que se utilizaron para el estudio fueron Scotchbond Universal (3M ESPE), All-Bond Universal (Bisco), Gluma Bond Universal (Heraeus Kulzer), Tetric N-Bond Universal (Ivoclar-Vivadent), Futurabond U (VOCO), Peak Universal Bond (Ultradent) y un adhesivo convencional de cuarta generación OptiBond FL (Kerr) que se utilizó como grupo control, todos disponibles en México. Para el estudio se obtuvieron y almacenaron en agua destilada 70 órganos dentarios posteriores de dentición permanente de ser humano libres de caries, a los cuales se les realizaron dos cortes con un disco de diamante, primero se cortaron en sentido transversal, dividiendo a los dientes en dos partes; coronas y raíces, después a las coronas se les realizó un corte longitudinal de mesial a distal para obtener dos mitades de las coronas, las cuales fueron insertadas en resina poliéster, después se recortaron y pulieron, se lijó la superficie de la dentina durante un minuto realizando movimientos en forma de ocho, posteriormente se realizaron los procedimientos adhesivos según las indicaciones de cada fabricante, continuando con los procedimientos restauradores para esto se colocó un fragmento de resina compuesta (FiltekTM Z350 XT, 3M ESPE, St. Paul, Minnesota, USA) con la ayuda de un molde de plástico de forma “bite ramp” (rampa de mordida). Dichas muestras se almacenaron en agua destilada durante 24 horas en una incubadora a 37.5°C, antes de someterlas a la prueba de laboratorio en la maquina universal de ensayos (Autograph AGS-X, Shimadzu Co, Tokio, Japón). Resultados: Los resultados obtenidos fueron sometidos a un análisis de varianza (ANOVA) de un factor con el fin de determinar si existen diferencias significativas entre los diferentes grupos tratados con diferentes sistemas adhesivos universales. El análisis ANOVA con un p-valor <0.05 mostró que existen diferencias estadísticamente significativas entre los diferentes grupos rechazando la hipótesis nula planteada en este estudio. Posteriormente con el fin de determinar cuáles grupos son diferentes estadísticamente, se realizó el test a posteriori, llamada “prueba de Scheffé", el cual realizó la comparación múltiple de promedios entre los distintos grupos para encontrar las diferencias estadísticamente significativas. Todos los sistemas adhesivos universales analizados en la prueba de resistencia no mostraron diferencias estadísticamente significativas con respecto al adhesivo control OptiBond FL (Kerr). Los adhesivos Scotchbond Universal (3M ESPE) y All- Bond Universal (Bisco) mostraron una resistencia significativa mayor con respecto al adhesivo universal Gluma Bond Universal (Heraeus Kulzer). Conclusiones: La presente investigación mostró que no existe diferencia significativa en la resistencia obtenida en los sistemas adhesivos universales cuando son comparados con respecto al adhesivo control OptiBond FL (Kerr). El adhesivo universal Gluma Bond Universal (Heraeus Kulzer) mostró una diferencia significativamente menor al ser comparado con los adhesivos universales Scotchbond Universal (3M ESPE) y All-Bond Universal (Bisco). De todos los adhesivos universales analizados en esta investigación el adhesivo universal que mostró los mejores resultados en promedio de resistencia fue el Scotchbond Universal (3M ESPE) y el que mostró los resultados más bajos fue Gluma Bond Universal (Heraeus Kulzer)

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at √ s = 8 TeV with the ATLAS detector

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMThis paper reports inclusive and differential measurements of the t ¯t charge asymmetry AC in 20.3 fb−1 of √s = 8 TeV pp collisions recorded by the ATLAS experiment at the Large Hadron Collider at CERN. Three differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the t ¯t system. The t ¯t pairs are selected in the single-lepton channels (e or μ) with at least four jets, and a likelihood fit is used to reconstruct the t ¯t event kinematics. A Bayesian unfolding procedure is performed to infer the asymmetry at parton level from the observed data distribution. The inclusive t ¯t charge asymmetry is measured to be AC = 0.009 ± 0.005 (stat. + syst.). The inclusive and differential measurements are compatible with the values predicted by the Standard ModelWe acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF,Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMTCR,MPOCR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEADSM/ IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom;DOEandNSF,United States ofAmerica. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario InnovationTrust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLASTier- 1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwid

    Measurements of fiducial cross-sections for t t ̅ production with one or two additional b-jets in pp collisions at √s = 8 TeV using the ATLAS detector

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMFiducial cross-sections for t ¯t production with one or two additional b-jets are reported, using an integrated luminosity of 20.3 fb−1 of proton–proton collisions at a centre-of-mass energy of 8 TeV at the Large Hadron Collider, collected with the ATLAS detector. The cross-section times branching ratio for t ¯t events with at least one additional b-jet is measured to be 950 ± 70 (stat.) +240 −190 (syst.) fb in the lepton-plus-jets channel and 50 ± 10 (stat.) +15 −10 (syst.) fb in the eμ channel. The cross-section times branching ratio for events with at least two additional b-jets is measured to be 19.3 ± 3.5 (stat.) ± 5.7 (syst.) fb in the dilepton channel (eμ,μμ, and ee) using a method based on tight selection criteria, and 13.5 ± 3.3 (stat.) ± 3.6 (syst.) fb using a looser selection that allows the background normalisation to be extracted from data. The latter method also measures a value of 1.30 ± 0.33 (stat.) ± 0.28 (syst.)% for the ratio of t ¯t production with two additional b-jets to t ¯t production with any two additional jets. All measurements are in good agreement with recent theory predictionsWe acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMTCR, MPOCR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEADSM/ IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR;MESTD, Serbia; MSSR, Slovakia; ARRS andMIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario InnovationTrust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sk+éodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwid

    Ibrutinib does not impact CCR7-mediated homeostatic migration in T-cells from chronic lymphocytic leukemia patients

    Full text link
    Bruton’s tyrosine kinase inhibitor ibrutinib has significantly changed treatment landscape in chronic lymphocytic leukemia (CLL). Growing evidence supports ibrutinib to work beyond the effect on tumor cells by means of, for example, restoring functionality of the T-cell compartment and increasing circulating T-cell numbers. Recent evidence suggests T-cell enhanced expansion, rather than increased egress from secondary lymphoid organs (SLO), as a root cause for ibrutinib-induced lymphocytosis. However, whether the latter physiological change is also a consequence of a forced retention in blood remains undisclosed. Since CCR7 is the main chemokine receptor taking over the homing of T-cells from peripheral compartments to lymph nodes and other SLO, we aimed to investigate the impact of ibrutinib on CCR7 functionality in T-cells. To this end, we documented receptor expression in T-cells from a large cohort of ibrutinib-treated CLL patients, and performed different in vivo and in vitro migration models. Overall, our data confirm that CCR7 expression or receptor-mediated migration in CLL T-cells is not affected by ibrutinib. Furthermore, it does not modulate CCR7-driven homing nor nodal interstitial migration. Together, our results support that ibrutinib-induced CLL T-cell accumulation in the blood stream is not derived from an impairment of CCR7-driven recirculation between the SLO and bloodstream, and therefore T-cell expansion is the most plausible causeA.M.-J. was partially financed by Alfonso Martín Escudero Foundation. The other authors received no grants for this wor
    corecore