31 research outputs found

    The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination

    Get PDF
    Rhodopsins are membrane-embedded photoreceptors found in all major taxonomic kingdoms using retinal as their chromophore. They play well-known functions in different biological systems, but their roles in fungi remain unknown. The filamentous fungus Fusarium fujikuroi contains two putative rhodopsins, CarO and OpsA. The gene carO is light-regulated, and the predicted polypeptide contains all conserved residues required for proton pumping. We aimed to elucidate the expression and cellular location of the fungal rhodopsin CarO, its presumed proton-pumping activity and the possible effect of such function on F. fujikuroi growth. In electrophysiology experiments we confirmed that CarO is a green-light driven proton pump. Visualization of fluorescent CarO-YFP expressed in F. fujikuroi under control of its native promoter revealed higher accumulation in spores (conidia) produced by light-exposed mycelia. Germination analyses of conidia from carO2 mutant and carO1 control strains showed a faster development of light-exposed carO2 germlings. In conclusion, CarO is an active proton pump, abundant in light-formed conidia, whose activity slows down early hyphal development under light. Interestingly, CarO-related rhodopsins are typically found in plant-associated fungi, where green light dominates the phyllosphere. Our data provide the first reliable clue on a possible biological role of a fungal rhodopsi

    Opsin 1 and Opsin 2 of the Corn Smut Fungus Ustilago maydis Are Green Light-Driven Proton Pumps

    Get PDF
    In fungi, green light is absorbed by rhodopsins, opsin proteins carrying a retinal molecule as chromophore. The basidiomycete Ustilago maydis, a fungal pathogen that infects corn plants, encodes three putative photoactive opsins, called ops1 (UMAG_02629), ops2 (UMAG_00371), and ops3 (UMAG_04125). UmOps1 and UmOps2 are expressed during the whole life cycle, in axenic cultures as well as in planta, whereas UmOps3 was recently shown to be absent in axenic cultures but highly expressed during plant infection. Here we show that expression of UmOps1 and UmOps2 is induced by blue light under control of white collar 1 (Wco1). UmOps1 is mainly localized in the plasma membrane, both when expressed in HEK cells and U. maydis sporidia. In contrast, UmOps2 was mostly found intracellularly in the membranes of vacuoles. Patch-clamp studies demonstrated that both rhodopsins are green light-driven outward rectifying proton pumps. UmOps1 revealed an extraordinary pH dependency with increased activity in more acidic environment. Also, UmOps1 showed a pronounced, concentration-dependent enhancement of pump current caused by weak organic acids (WOAs), especially by acetic acid and indole-3-acetic acid (IAA). In contrast, UmOps2 showed the typical behavior of light-driven, outwardly directed proton pumps, whereas UmOps3 did not exhibit any electrogenity. With this work, insights were gained into the localization and molecular function of two U. maydis rhodopsins, paving the way for further studies on the biological role of these rhodopsins in the life cycle of U. maydis

    Electrofused giant protoplasts of Saccharomyces cerevisiae as a novel system for electrophysiological studies on membrane proteins

    Get PDF
    AbstractGiant protoplasts of Saccharomyces cerevisiae of 10–35 µm in diameter were generated by multi-cell electrofusion. Thereby two different preparation strategies were evaluated with a focus on size distribution and “patchability” of electrofused protoplasts. In general, parental protoplasts were suitable for electrofusion 1–12 h after isolation. The electrophysiological properties of electrofused giant protoplasts could be analyzed by the whole-cell patch clamp technique. The area-specific membrane capacitance (0.66±0.07 µF/cm2) and conductance (23–44 µS/cm2) of giant protoplasts were consistent with the corresponding data for parental protoplasts. Measurements with fluorescein-filled patch pipettes allowed to exclude any internal compartmentalisation of giant protoplasts by plasma membranes, since uniform (diffusion-controlled) dye uptake was only observed in the whole-cell configuration, but not in the cell-attached formation. The homogeneous structure of giant protoplasts was further confirmed by the observation that no plasma membrane associated fluorescence was seen in the interior of giant cells after electrofusion of protoplasts expressing the light-activated cation channel Channelrhodopsin-2 (ChR2) linked to yellow fluorescent protein (YFP). Patch clamp analysis of the heterologously expressed ChR2-YFP showed typical blue light dependent, inwardly-directed currents for both electrofused giant and parental protoplasts. Most importantly, neither channel characteristics nor channel expression density was altered by electric field treatment. Summarising, multi-cell electrofusion increases considerably the absolute number of membrane proteins accessible in patch clamp experiments, thus presumably providing a convenient tool for the biophysical investigation of low-signal transporters and channels

    The Photoreaction of the Proton-Pumping Rhodopsin 1 From the Maize Pathogenic Basidiomycete Ustilago maydis

    Get PDF
    Microbial rhodopsins have recently been discovered in pathogenic fungi and have been postulated to be involved in signaling during the course of an infection. Here, we report on the spectroscopic characterization of a light-driven proton pump rhodopsin (UmRh1) from the smut pathogen Ustilago maydis, the causative agent of tumors in maize plants. Electrophysiology, time-resolved UV/Vis and vibrational spectroscopy indicate a pH-dependent photocycle. We also characterized the impact of the auxin hormone indole-3-acetic acid that was shown to influence the pump activity of UmRh1 on individual photocycle intermediates. A facile pumping activity test was established of UmRh1 expressed in Pichia pastoris cells, for probing proton pumping out of the living yeast cells during illumination. We show similarities and distinct differences to the well-known bacteriorhodopsin from archaea and discuss the putative role of UmRh1 in pathogenesis

    Protein Activity of the Fusarium fujikuroi Rhodopsins CarO and OpsA and Their Relation to Fungus–Plant Interaction

    Get PDF
    Fungi possess diverse photosensory proteins that allow them to perceive different light wavelengths and to adapt to changing light conditions in their environment. The biological and physiological roles of the green light-sensing rhodopsins in fungi are not yet resolved. The rice plant pathogen Fusarium fujikuroi exhibits two different rhodopsins, CarO and OpsA. CarO was previously characterized as a light-driven proton pump. We further analyzed the pumping behavior of CarO by patch-clamp experiments. Our data show that CarO pumping activity is strongly augmented in the presence of the plant hormone indole-3-acetic acid and in sodium acetate, in a dose-dependent manner under slightly acidic conditions. By contrast, under these and other tested conditions, the Neurospora rhodopsin (NR)-like rhodopsin OpsA did not exhibit any pump activity. Basic local alignment search tool (BLAST) searches in the genomes of ascomycetes revealed the occurrence of rhodopsin-encoding genes mainly in phyto-associated or phytopathogenic fungi, suggesting a possible correlation of the presence of rhodopsins with fungal ecology. In accordance, rice plants infected with a CarO-deficient F. fujikuroi strain showed more severe bakanae symptoms than the reference strain, indicating a potential role of the CarO rhodopsin in the regulation of plant infection by this fungus.España Ministerio de Ciencia y tecnología BIO20010-15430Junta de Andalucía CTS-663

    Reconstruction of the High-Osmolarity Glycerol (HOG) Signaling Pathway from the Halophilic Fungus Wallemia ichthyophaga in Saccharomyces cerevisiae

    Get PDF
    The basidiomycetous fungus Wallemia ichthyophaga grows between 1.7 and 5.1 M NaCl and is the most halophilic eukaryote described to date. Like other fungi, W. ichthyophaga detects changes in environmental salinity mainly by the evolutionarily conserved high-osmolarity glycerol (HOG) signaling pathway. In Saccharomyces cerevisiae, the HOG pathway has been extensively studied in connection to osmotic regulation, with a valuable knock-out strain collection established. In the present study, we reconstructed the architecture of the HOG pathway of W. ichthyophaga in suitable S. cerevisiae knock-out strains, through heterologous expression of the W. ichthyophaga HOG pathway proteins. Compared to S. cerevisiae, where the Pbs2 (ScPbs2) kinase of the HOG pathway is activated via the SHO1 and SLN1 branches, the interactions between the W. ichthyophaga Pbs2 (WiPbs2) kinase and the W. ichthyophaga SHO1 branch orthologs are not conserved: as well as evidence of poor interactions between the WiSho1 Src-homology 3 (SH3) domain and the WiPbs2 proline-rich motif, the absence of a considerable part of the osmosensing apparatus in the genome of W. ichthyophaga suggests that the SHO1 branch components are not involved in HOG signaling in this halophilic fungus. In contrast, the conserved activation of WiPbs2 by the S. cerevisiae ScSsk2/ScSsk22 kinase and the sensitivity of W. ichthyophaga cells to fludioxonil, emphasize the significance of two-component (SLN1-like) signaling via Group III histidine kinase. Combined with protein modeling data, our study reveals conserved and non-conserved protein interactions in the HOG signaling pathway of W. ichthyophaga and therefore significantly improves the knowledge of hyperosmotic signal processing in this halophilic fungus

    Die Fakir-Methode - dielektrophoretische Zellattraktion und intrazelluläre Messung von Ionenkanälen mit Nanometallelektroden

    No full text
    Ionenkanäle bilden therapeutische Schlüsselstellen für viele Erkrankungen und sind daher vor allem für die pharmakologische und medizinische Forschung von herausragender Bedeutung. Der Forschungsbedarf ist enorm und dementsprechend groß auch die Nachfrage nach elektrophysiologischen Systemen, die eine Analyse von Ionenkanälen und/oder Wirkstoffen im Hochdurchsatz erlauben. Derzeitige Hochdurchsatzsysteme basieren zumeist auf modifizierten Patch-Clamp-Verfahren, weisen aber im Vergleich zu manuellen Patch-Clamp-Systemen noch einige Nachteile auf. In der vorliegenden Arbeit wurde daher im Rahmen eines vom Bundesministerium für Bildung und Forschung geförderten BioChancePlus-Projektes eine alternative Methode, die Fakir-Methode, entwickelt und ihre Einsatzmöglichkeit in Hochdurchsatzsystemen evaluiert. Bei der Fakir-Methode werden Zellen in einem inhomogenen, elektrischen Wechselfeld mit Hilfe dielektrophoretischer Kräfte zu Metallnanoelektroden hin beschleunigt, aufgrund ihrer Bewegungsenergie von letzteren penetriert und dadurch elektrisch kontaktiert. Dies ermöglicht die anschließende, intrazelluläre Messung in physiologischer Lösung. Im Vergleich zur Patch-Clamp-Methode hat die Fakir-Methode die Vorteile, dass das Zytoplasma der Zelle erhalten bleibt und dass mit einer geringen Zelldichte gearbeitet werden kann. Auf der anderen Seite polarisiert die Elektrode schnell und die genaue, intrazelluläre Zusammensetzung während der Messung ist nicht bekannt. Für die Realisierung der Fakir-Methode im Experiment wurde eine Mikrofluidikkammer mit austauschbaren Metallmikro- und Metallnanoelektroden- Chips entwickelt, die die mikroskopische Beobachtung des Kontaktierungsprozesses ermöglichte. Die Charakterisierung der Elektroden erfolgte sowohl durch Potentialmessungen als auch mit Hilfe von Impedanzspektroskopie. Um die dielektrophoretische Attraktion von Zellen genauer steuern zu können, wurde zudem ein Amplitudenmodulator entwickelt. Zellen konnten sowohl einzeln, als auch in Gruppen kontaktiert werden. Intrazelluläre Potentialmessungen von HEK293-Zellen, die den blaulichtgesteuerten Kationenkanal Channelrhodopsin-2 (ChR2) exprimierten, zeigten, dass mit Hilfe der Fakir-Methode von Membranproteinen verursachte Spannungsänderungen gemessen werden können. Beim Fakir-Modell auftretende Schwierigkeiten wurden analysiert und die Ergebnisse genutzt, um ein Konzept für eine hochreproduzierbare Herstellung von Nanoelektroden-Arrays unter Verwendung der 2-Photonenpolymerisations- Technolgie (2PP) zu entwerfen. Für den Einsatz als Biosensoren sind große Zellen besonders geeignet. Eine effektive Vergrößerung von Zellen kann durch die Multi-cell-Elektrofusion erreicht werden. Diese Art der Herstellung von Riesenzellen ist insbesondere deshalb so interessant, weil die Elektrofusion problemlos in ein automatisiertes Mikrofluidiksystem eingebunden werden kann. Neben HEK293-Zellen konnten nach Entwicklung geeigneter Protokolle für die Herstellung von Protoplasten auch Saccharomyces cerevisiae und Pichia pastoris zu Riesenzellen elektrofusioniert werden. Solche Riesenzellen wurden im Rahmen dieser Arbeit biophysikalisch charakterisiert. Neben Kapazitätsmessungen zeigten sowohl die Expression von YFP in den Membranen als auch die Verwendung von fluoresceinhaltiger Patch-Clamp- Pipettenlösung, dass es sich bei den Riesenzellen um einheitliche Kompartimente handelte und somit die gesamte Membranfläche für elektrophysiologische Experimente zur Verfügung stand. Vergleichende Patch-Clamp-Messungen von ChR2-exprimierenden Ursprungs- und Riesenzellen ergaben nicht nur, dass das überexprimierte Protein auch nach der Elektrofusion noch funktional war, sondern auch, dass die Expressionsdichte unverändert blieb. Damit bilden elektrofusionierte Riesenzellen weit über ihre Einsatzmöglichkeiten in Hochdurchsatzsystemen hinaus ein vielversprechendes Werkzeug, um zum Beispiel elektrogene Membranproteine mit geringer Stromamplitude nachzuweisen oder in der giant-inside-out- Konfiguration elektrophysiologische Messungen durchzuführen. Lipophile Anionen können eingesetzt werden, um die elektrischen Eigenschaften der Membranen zu verändern und die Zellstabiliät während des Elektromanipulationsprozesses zu verbessern. Daher wurde für vier verschiedene lipophile Anionen die Spannungsabhängigkeit der Erhöhung der spezifischen Membrankapazität in Patch- Clamp-Experimenten mit HEK293-Zellen analysiert.Ion channels provide therapeutical points of attack for many diseases. That is why they play a prominent role in pharmacological and medical research. The need of further research is enormous and, consequently, also the requirement of systems which allow the analysis of ion channels and / or a variety of drugs in highthroughput scale. Most current high-throughput systems are based on a modified patch clamp technique, but compared to manual patch clamp systems they still have some drawbacks. Therefore, in the present work within the framework of a “BioChancePlus” project (supported by the German Federal Ministry for Education and Research) an alternative method, the Fakir-method, was developed. Its application in high throughput systems was evaluated. The Fakir method consists of the following principles: A cell is exposed to an inhomogeneous, electrical alternating field. It experiences a dielectrophoretic force and is accelerated in the direction of metal nano electrodes. Due to its kinetic energy the cell is penetrated and thereby electrically contacted by the electrodes. Thus, a subsequent, intracellular measurement under physiological conditions is possible. Compared to the patch clamp method the fakir method offers the advantage of cell cytoplasm preservation and the requirement of only a low cell suspension density. On the other hand, however, the electrode is quickly polarized and the intracellular composition of the cell is not precisely determined. To proof the Fakir-method in experiments a microfluidic chamber with disposable metal micro- and also nanoelectrode chips was designed. It allowed the microscopic observation of the contacting process. The characterization of the electrodes was performed by potential measurements as well as by means of impedance spectroscopy. For the exact dielectrophoretic attraction of cells an amplitude modulator was developed. Cells could be contacted either individually or in groups. Intracellular potential measurements of HEK293 cells, expressing the blue light gated cation channel Channelrhodopsin-2 (ChR2), showed that membrane proteinmediated voltage changes can be measured by using the Fakir-method. Malfunctions of the Fakir-model system were analyzed. The results were then used to create a concept for a highly reproducable production of nanoelectrode arrays taking advantage of the 2PP-technology. Particularly large cells are useful as biosensors. An effective enlargement of cells can be reached by multi-cell electrofusion. This kind of giant cell production is very promising because of the possibility to integrate the electrofusion process into an automated microfluidic system. Apart from HEK293 cells it was possible to develop appropriate protocols for the production of protoplasts from both, S. cerevisiae and P. pastoris yeasts, and to produce giant cells by multi cell electrofusion. In the context of this work these giant cells were biophysically characterized. Capacity measurements, the expression of YFP in the membranes and the use of sodium fluorescein within the patch pipette solution demonstrated that the giant cells indeed are single compartments. Thus, the entire membrane surface is accessible for electrophysiological experiments. Comparative patch clamp measurements were performed on both, parental and electrofused, ChR2-expressing cells. The overexpressed protein was still functional after electrofusion and also the expression density remained unchanged. Hence, electrofused giant cells - far beyond use in high throughput systems - also provide an interesting tool, e.g. for the study of electrogenic membrane proteins with low current amplitude or for electrophysiological measurements on HEK293 cells in the giant-inside-out configuration. Lipophilic anions can be used to vary the electrical parameters as well as to enhance the cell stability during electromanipulation processes. Therefore, the voltage dependency of the specific membrane capacity increase was analyzed in patch clamp experiments using HEK293 cells in presence of lipophilic anions

    Superaufgelöste Mikroskopie: Pilze unter Beobachtung

    No full text
    The diffraction limit of light confines fluorescence imaging of subcellular structures in fungi. Different super-resolution methods are available for the analysis of fungi that we briefly discuss. We exploit the filamentous fungus Fusarium fujikuroi expressing a YFP-labeled membrane protein showing the benefit of correlative light- and electron microscopy (CLEM), that combines structured illumination microscopy (SIM) and scanning election microscopy (SEM)
    corecore