516 research outputs found

    A note on the expected biases in conventional iterative health state valuation protocols

    Get PDF
    Background: Typical health state valuation exercises use trade off methods, such as the Time Trade Off or the Standard Gamble, involving a series of iterated questions so that a value for each health state by each individual respondent is elicited. This iterative process is a source of potential biases, but this has not received much attention in the health state valuation literature. The issue has been researched widely in the contingent valuation (CV) literature which elicits the monetary value of hypothetical outcomes. Methods: The lessons learnt in the CV literature are revisited in the context of the design and administration of health state valuations. The paper introduces the main known biases in the CV literature, and then examines how each might affect conventional iterative health state valuations. Results: Of the eight main types of biases, starting point bias, range bias, and incentive incompatibility bias are found to be potentially relevant. Furthermore, the magnitude and direction of the bases are unlikely to be uniform, and depend on the range of the value (e.g. between 0 and 0.5). Limitation: this is an overview paper and the conclusions drawn need to be tested empirically. Conclusions: health state valuation studies, like CV studies, are susceptible to a number of possible biases that affect the resulting values. Their magnitude and direction are unlikely to be uniform, and thus empirical studies are needed to diagnose the problem and if necessary to address it

    Bacterial fitness shapes the population dynamics of antibiotic-resistant and -susceptible bacteria in a model of combined antibiotic and anti-virulence treatment

    Get PDF
    Bacterial resistance to antibiotic treatment is a huge concern: introduction of any new antibiotic is shortly followed by the emergence of resistant bacterial isolates in the clinic. This issue is compounded by a severe lack of new antibiotics reaching the market. The significant rise in clinical resistance to antibiotics is especially problematic in nosocomial infections, where already vulnerable patients may fail to respond to treatment, causing even greater health concern. A recent focus has been on the development of anti-virulence drugs as a second line of defence in the treatment of antibiotic-resistant infections. This treatment, which weakens bacteria by reducing their virulence rather than killing them, should allow infections to be cleared through the body's natural defence mechanisms. In this way there should be little to no selective pressure exerted on the organism and, as such, a predominantly resistant population would be unlikely to emerge. However, much controversy surrounds this approach with many believing it would not be powerful enough to clear existing infections, restricting its potential application to prophylaxis. We have developed a mathematical model that provides a theoretical framework to reveal the circumstances under which anti-virulence drugs may or may not be successful. We demonstrate that by harnessing and combining the advantages of antibiotics with those provided by anti-virulence drugs, given infection-specific parameters, it is possible to identify treatment strategies that would efficiently clear bacterial infections, while preventing the emergence of resistant subpopulations. Our findings strongly support the continuation of research into anti-virulence drugs and demonstrate that their applicability may reach beyond infection prevention.Comment: Pre-review manuscript. Submitted to Journal of Theoretical Biology, July 21st 201

    A GaAs-based self-aligned stripe distributed feedback laser

    Get PDF
    We demonstrate operation of a GaAs-based self-aligned stripe (SAS) distributed feedback (DFB) laser. In this structure, a first order GaInP/GaAs index-coupled DFB grating is built within the p-doped AlGaAs layer between the active region and the n-doped GaInP opto-electronic confinement layer of a SAS laser structure. In this process no Al-containing layers are exposed to atmosphere prior to overgrowth. The use of AlGaAs cladding affords the luxury of full flexibility in upper cladding design, which proved necessary due to limitations imposed by the grating infill and overgrowth with the GaInP current block layer. Resultant devices exhibit single-mode lasing with high side-mode-suppression of >40 dB over the temperature range 20 °C–70 °C. The experimentally determined optical profile and grating confinement correlate well with those simulated using Fimmwave

    A sub-critical barrier thickness normally-off AlGaN/GaN MOS-HEMT

    Get PDF
    A new high-performance normally-off gallium nitride (GaN)-based metal-oxide-semiconductor high electron mobility transistor that employs an ultrathin subcritical 3 nm thick aluminium gallium nitride (Al0.25Ga0.75N) barrier layer and relies on an induced two-dimensional electron gas for operation is presented. Single finger devices were fabricated using 10 and 20 nm plasma-enhanced chemical vapor-deposited silicon dioxide (SiO2) as the gate dielectric. They demonstrated threshold voltages (Vth) of 3 and 2 V, and very high maximum drain currents (IDSmax) of over 450 and 650 mA/mm, at a gate voltage (VGS) of 6 V, respectively. The proposed device is seen as a building block for future power electronic devices, specifically as the driven device in the cascode configuration that employs GaN-based enhancement-mode and depletion-mode devices

    Any Colour You Like: The Interplay of Fichte’s ‘I’, ‘Not-I’, and Anstoß

    Get PDF
    In this paper, I explore two differing conceptions of J.G. Fichte’s Anstoß and how it relates to his Transcendental ‘I’, the ground of his Wissenschaftslehre. I argue that one should not attempt to read later interpretations of the Anstoß back into his earlier definition, but find that attempts to tread a middle way between the original and later interpretations have thus far been equally unsuccessful. Instead, I suggest a new way of interpreting the Anstoß as a constituent component of the absolute I, built into his first principle of self-consciousness, and argue that this way allows the I to turn back upon itself without being externally determined. I argue that this way also avoids solipsistic and nihilistic objections by actually supporting the arguments of the proponents of earlier interpretations. I then advance to advocate the Anstoß’s importance in the wider sphere of understanding how Fichte’s theory of transzendentallogisch enables his first and rudimentary derivation of consciousness, prior to the finitely derived practical I of his later Jena writings

    Development of Si/SiGe technology for microwave integrated circuits

    Get PDF
    A complete fabrication process has been developed for the realisation of Si/SiGe microwave integrated circuits (SIMICs). Using the process, a number of active and passive elements for microwave circuits have been demonstrated including 1. Metal gate p-SiGe MOSFETs . 2. Low loss transmission lines on CMOS grade silicon. 3. High quality spiral inductors on CMOS grade silicon. 4. High performance metal gate strained silicon n-MOSFETs. Single stage amplifiers have been designed based on the technology developed in this work. The MOSFETs have good DC performance. Strained SiGe p-channel MOSFETs with 1 mum gate length have an extrinsic transconductance of 36 mS/mm. Strained silicon n-channel MOSFETs with 0.3 mum gate length have extrinsic transconductance of 230 mS/mm. The RF performance of a metal gate 0.3 mum gate length strained silicon MOSFET is measured, with cut off frequency and maximum frequency of oscillation of 20 GHz and 21 GHz respectively. Coplanar waveguide transmission lines of 50 Ohm characteristic impedance, fabricated using spin on dielectrics on a CMOS grade silicon subsfrate, have losses less than 0.5 dB/mm up to 60 GHz. Spiral inductors fabricated on the low loss dielectric have Q > 15. Using the passive and active element library developed, single stage amplifiers were designed with gain of 12 dB at 3 GHz or 7.5 dB at 6 GHz. The device layer structures were designed using a simple ID Poisson solver. The p-channel device used a concentration graded SiGe channel to obtain high mobility and carrier concentration. The n-channel RF device with a strained silicon channel incorporates a metal gate technology that is'directly responsible for the high values of f achieved. The spiral inductors and coplanar waveguides are fabricated using a spin on dielectric process to separate them from the lossy silicon substrate. The same technology is used to reduce the parasitic capacitance of device contact pads. The engineering conclusion of this work is that SIMICs, for applications in the frequency range 1 to 10 GHz, can be made with the current passive and active element library at the University of Glasgow. Further improvement in both passive and active element performance to increase the frequency is set out in future work. From a practical viewpoint a process is now in place that will underpin the University of Glasgow's Si / SiGe SIMIC projects in the future

    Narrow Linewidth 780 nm Distributed Feedback Lasers for Cold Atom Quantum Technology

    Get PDF
    Cold atom quantum technology systems have a wide range of potential applications which includes atomic clocks, rotational sensors, inertial sensors, quantum navigators, magnetometers and gravimeters. The UK Quantum Technology Hub in Sensors and Metrology has the aim of developing miniature cold atom systems using an approach similar to that pioneered by the chip scale atomic clock where microfabricated vacuum chambers have atomic transitions excited and probed by lasers. Whilst narrow linewidth Ti:Sa and external cavity diode lasers have been required for cooling and control, such lasers are too large, power hungry and expensive for future miniature cold atom systems. Here we demonstrate 1 mm long 780.24 nm GaAs/AlGaAs distributed feedback (DFB) lasers aimed at 87Rb cold atom systems operating at 20 ËšC with over 50 mW of power and side-mode suppression ratios of 46 dB using sidewall gratings and no regrowth. Rb spectroscopy is used to demonstrate linewidths below the required 6.07 MHz natural linewidth of the 87Rb D2 optical transition used for cooling. Initial packaged fibre-coupled devices demonstrate lifetimes greater than 200 hours. We also investigate the use of integrated semiconductor amplifiers (SOAs) and longer devices to further reduce the linewidths well below 1 MHz. A range of options to control the populations of electrons in the hyperfine split energy levels spaced by 3.417 GHz are examined. Two integrated lasers, integrated electro-absorption modulators (EAMs) and the direct modulation of a single DFB laser approaches are investigated and we will discuss which is best suited to integrated cold atom systems

    Heparin-stabilised iron oxide for MR applications : a relaxometric study

    Get PDF
    Superparamagnetic nanoparticles have strong potential in biomedicine and have seen application as clinical magnetic resonance imaging (MRI) contrast agents, though their popularity has plummeted in recent years, due to low efficacy and safety concerns, including haemagglutination. Using an in situ procedure, we have prepared colloids of magnetite nanoparticles, exploiting the clinically approved anti-coagulant, heparin, as a templating stabiliser. These colloids, stable over several days, produce exceptionally strong MRI contrast capabilities particularly at low fields, as demonstrated by relaxometric investigations using nuclear magnetic resonance dispersion (NMRD) techniques and single field r1 and r2 relaxation measurements. This behaviour is due to interparticle interactions, enhanced by the templating effect of heparin, resulting in strong magnetic anisotropic behaviour which closely maps particle size. The nanocomposites have also reliably prevented protein-adsorption triggered thrombosis typical of non-stabilised nanoparticles, showing great potential for in vivo MRI diagnostics

    Longitudinal Associations Between Cognitive Functioning and Depressive Symptoms Among Couples in the Mexican Health and Aging Study

    Get PDF
    OBJECTIVE: To examine the bidirectional associations between older adult spouses\u27 cognitive functioning and depressive symptoms over time and replicate previous findings from the United States (US) in Mexico. DESIGN: Longitudinal, dyadic path analysis with the actor-partner interdependence model. SETTING: Data were from the three most recent interview waves (2012, 2015, and 2018) of the Mexican Health and Aging Study (MHAS), a longitudinal national study of adults aged 50+ years in Mexico. PARTICIPANTS: Husbands and wives from 905 community-dwelling married couples (N = 1,810). MEASUREMENTS: The MHAS cognitive battery measured cognitive function. Depressive symptoms were assessed using a modified nine-item Center for Epidemiologic Studies Depression Scale. Baseline covariates included age, education, number of children, limitation with any activity of daily living, limitation with any instrumental activity of daily living, and pain. RESULTS: As hypothesized, there were significant within-individual associations in which one person\u27s own cognitive functioning and own depressive symptoms predicted their own follow-up cognitive functioning and depressive symptoms, respectively. In addition, a person\u27s own cognitive functioning predicted their own depressive symptoms, and a person\u27s own depressive symptoms predicted their own cognitive functioning over time. As hypothesized, there was a significant partner association such that one person\u27s depressive symptoms predicted more depressive symptoms in the partner. CONCLUSION: Findings from this study of older Mexican couples replicates findings from studies of older couples in the US, showing that depressive symptoms in one partner predict depressive symptoms in the other partner over time; however, there was no evidence for cognition-depression partner associations over time
    • …
    corecore