72 research outputs found

    Phosphoenolpyruvate phosphomutase activity in an L-phosphonoalanine-mineralizing strain of Burkholderia cepacia

    Get PDF
    A strain of Burkholderia cepacia isolated by enrichment culture utilized l-2-amino-3-phosphonopropionic acid (phosphonoalanine) at concentrations up to 20 mM as a carbon, nitrogen, and phosphorus source in a phosphate-insensitive manner. Cells contained phosphoenolpyruvate phosphomutase activity, presumed to be responsible for cleavage of the C—P bond of phosphonopyruvate, the transamination product of l-phosphonoalanine; this was inducible in the presence of phosphonoalanine

    Competent but complex communication: The phenomena of pheromone-responsive plasmids

    Get PDF
    Enterococci are robust gram-positive bacteria that are found in a variety of surroundings and that cause a significant number of healthcare-associated infections. The genus possesses a high-efficiency pheromone-responsive plasmid (PRP) transfer system for genetic exchange that allows antimicrobial-resistance determinants to spread within bacterial populations. The pCF10 plasmid system is the best characterised, and although other PRP systems are structurally similar, they lack exact functional homologues of pCF10-encoded genes. In this review, we provide an overview of the enterococcal PRP systems, incorporating functional details for the less-well-defined systems. We catalogue the virulence-associated elements of the PRPs that have been identified to date, and we argue that this reinforces the requirement for elucidation of the less studied systems

    Microbial water quality: Voltammetric detection of coliforms based on riboflavin–ferrocyanide redox couples

    Get PDF
    The ability to screen water for the presence of faecal contamination is a pressing need for rural communities dependent upon local purification systems. While there are a multitude of coliform detection assays based on the activity of β-galactosidase, this report details the adaptation of a voltammetric pH sensing strategy which could offer rapid analysis. The approach exploits the bacterial metabolism of lactose via pyruvate to lactate with the subsequent decrease in pH measured by examining the peak separation of a riboflavin (sensing) – ferrocyanide (reference) couple. Disposable carbon fibre electrodes were used as in situ sensors in Escherichia coli cultures (103–107 cfu/mL) with detection times of 4 h enabling confirmation of coliform activity. The bacterial compatibility of the riboflavin–ferrocyanide system in combination with the simplicity of the detection methodology, stand in marked contrast to many existing coliform assays and could open new avenues through which voltammetric pH sensing could be employed. Keywords: Galactosidase, pH, Riboflavin, Coliform, Water quality, Senso

    Microbial Biosurfactants: Antimicrobial Activity and Potential Biomedical and Therapeutic Exploits

    Get PDF
    The rapid emergence of multidrug-resistant pathogens worldwide has raised concerns regarding the effectiveness of conventional antibiotics. This can be observed in ESKAPE pathogens, among others, whose multiple resistance mechanisms have led to a reduction in effective treatment options. Innovative strategies aimed at mitigating the incidence of antibiotic-resistant pathogens encompass the potential use of biosurfactants. These surface-active agents comprise a group of unique amphiphilic molecules of microbial origin that are capable of interacting with the lipidic components of microorganisms. Biosurfactant interactions with different surfaces can affect their hydrophobic properties and as a result, their ability to alter microorganisms’ adhesion abilities and consequent biofilm formation. Unlike synthetic surfactants, biosurfactants present low toxicity and high biodegradability and remain stable under temperature and pH extremes, making them potentially suitable for targeted use in medical and pharmaceutical applications. This review discusses the development of biosurfactants in biomedical and therapeutic uses as antimicrobial and antibiofilm agents, in addition to considering the potential synergistic effect of biosurfactants in combination with antibiotics. Furthermore, the anti-cancer and anti-viral potential of biosurfactants in relation to COVID-19 is also discussed

    Studies of Malaysian Plants in Prevention and Treatment of Colorectal Cancer

    Get PDF
    Incidence rates vary 10-fold globally for colorectal cancer (CRC). Asia has lower rates than Western countries, but as the Western life-style becomes more prevalent in economically developing Asian countries, rates are increasing. Clinical therapy has improved over the last few decades, and national screening programmes are a proven and effective means of reducing mortality; chemoprevention through diet and life-style choices may provide additional value. Diet has strong associations with the aetiology of CRC, considerable epidemiological evidence exist that fruits and vegetables are associated with reduced risk of CRC. There is also extensive experimental evidence that phytochemicals from fruit and vegetables can modulate pathways of carcinogenesis. In this chapter, we consider Malaysia specifically, with its rich ethnopharmacological heritage and megabiodiversity; Malaysian natural compounds may be a source of potentially chemo-protective with relevance to CRC
    corecore