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Abstract

Enterococci are robust gram-positive bacteria that are found in a variety of surroundings

and that cause a significant number of healthcare-associated infections. The genus pos-

sesses a high-efficiency pheromone-responsive plasmid (PRP) transfer system for genetic

exchange that allows antimicrobial-resistance determinants to spread within bacterial popu-

lations. The pCF10 plasmid system is the best characterised, and although other PRP sys-

tems are structurally similar, they lack exact functional homologues of pCF10-encoded

genes. In this review, we provide an overview of the enterococcal PRP systems, incorporat-

ing functional details for the less-well-defined systems. We catalogue the virulence-associ-

ated elements of the PRPs that have been identified to date, and we argue that this

reinforces the requirement for elucidation of the less studied systems.

Introduction

The genus Enterococcus encompasses approximately 50 species renowned for their hardy

nature and are found in a wide array of environments, from the human intestinal tract to soils

in tropical and subtropical climates. Genome sizes range from 2.3 to 4.5 Mb and average 38%

GC content [1,2]. Although originally regarded as commensal gut microbes, the enterococci

have, over the past few decades, become recognised as major causes of healthcare-associated

infections. Enterococcal infections are increasingly challenging to treat because of intrinsic

antibiotic resistance possessed by Enterococcus spp. They can exhibit resistance to common

antibiotics (ampicillin or penicillin) and easily acquire new antimicrobial resistances (AMRs)

(e.g., to linezolid) [3–5]. Indeed, it has been noted that antimicrobial-resistant strains possess

larger genomes than nonpathogenic enterococcal isolates [6]. Enterococci utilise mobile

genetic elements (MGEs) such as transposons and plasmids to disseminate or acquire further

resistance determinants and/or novel virulence factors [7,8]. Worryingly, some enterococcal

plasmids are adapted to persist in a broad range of bacterial hosts, conveying traits across the

boundary of a single genus. For example, a broad host range plasmid belonging to incompati-

bility group 18 was demonstrated to transfer vancomycin resistance (VanA) from enterococci

to methicillin-resistant Staphylococcus aureus (MRSA) [9].
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For certain plasmids that transfer only within the enterococci, a peptide pheromone signal

is used to stimulate their distribution. This peptide pheromone is produced in, and released

by, plasmid-free (recipient) cells and generates a plasmid transfer response in plasmid-con-

taining (donor) cells [10–12]. The first pheromone-responsive plasmid (PRP) encountered

was pAD1, but investigations of plasmid transfer have focused on one other plasmid—pCF10,

which, unsurprisingly, remains the best characterised [13]. Less emphasis has been placed on

the mechanisms underlying transfer within other systems, however, and in this review, we

bring up to date what is known about PRP systems, placing their mechanistic details in the

context of the well-understood pCF10 system.

Significance of the PRP system

The PRP transfer system is highly efficient with conjugation reactions exhibiting an efficiency

of up to 10−1 (one transconjugant per 10 donor cells) under ideal conditions in liquid matings

[14,15]. Although our understanding of PRP transfer in the intestinal tract is not complete,

data from mouse studies reveal that the transfer of pCF10 within the upper intestinal tract is

high even in the presence of a competing microflora. The authors noted that the number of

pCF10-containing cells increased during the experiment, which is in line with work by Licht

and colleagues [16], who noted that transconjugants containing pCF10 persisted for longer

than donor cells within the intestines of mini pigs. Similarly, transfer of pAD1 occurs at high

rates within Syrian hamsters. In all cases, animal models were inoculated with donor and

recipient strains each at 107 colony-forming units (CFU) and above. Typical enterococcal

numbers within humans range between 105 and 107 CFU per gram; thus, the abovementioned

results reflect the transfer of PRP under conditions of dysbiosis [17–21].

Transferrable phenotypes encoded by PRP

Numerous PRPs have been identified within enterococci to date (Table 1), and with more

genome sequences available, the number of identified PRPs is likely to increase. Many PRPs

directly transfer an assortment of growth promoters and virulence traits (e.g., bacteriocins and

biofilm enhancers) into recipient enterococcal cells and may also contribute other advantages.

For example, Hirt and colleagues observed an increase in transconjugants even under nonse-

lective conditions in mice, leading them to hypothesise that plasmid transfer also conferred

some unknown metabolic advantage to recipient cells [18,22,23]. The acquisition of several

PRPs would theoretically benefit cells in their progression from commensal to pathogen by

contributing factors that could promote survival in the host. To date, 35 PRPs have been iden-

tified: the majority of these are present in Enterococcus faecalis, with only a few described in

Enterococcus faecium.

Antibiotic resistance. Several of the PRPs identified to date contain transposable ele-

ments (Table 1) that confer antibiotic resistance. For example Tn1546, encoding vanA, is

found in a few PRPs, although so far only one example of a vanB–encoding transposon

(Tn1549) has been identified in enterococcal PRPs [22,27,49–51]. Either van gene confers van-

comycin resistance, and other transposable elements confer resistance to other antibiotics,

including gentamicin and kanamycin (Tn4001) as well as erythromycin and tetracycline

(Tn925) [24,55]. Certain PRPs possess toxin/antitoxin (TA) systems that ensure plasmid inher-

itance within a population even in the absence of antibiotics. The best studied of these is the

type I TA par system in pAD1 encoding the faecalis plasmid-stabilizing toxin (Fst); however,

this system has been reviewed elsewhere [56]. Fst-like peptides can be found within a number

of gram-positive chromosomes (such as EF0409 of E. faecalis V583) as well as several PRPs

[57]. Both pAMS1 and pTEF2 contain Fst-like peptides ensuring their continuation within a
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Table 1. Enterococcal pheromone-responsive plasmids.

Plasmid Size (Kb) Original Host Pheromone (Sequence If Known) Plasmid Features Reference

pCF10 65 E. faecalis SF-7 cCF10 (LVTLVFV) Tn925
uvrA

[24,25]

pHKK703 55 E. faecium R7 cCF10 Mobilisation of pHKK702 [26]

pBRG1 50 E. faecium LS10 cCF10–like Tn1546 [27]

pMG2200 106.5 E. faecalis NKH15 cCF10 Tn1549
bac41
UV resistance

[22]

pMB1 90 E. faecalis S-48 cCF10 BC-48 [28]

pAMS1 130 E. faecalis MC4 cCF10 bacA- bacB
Chloramphenicol, streptomycin, tetracycline

resistance

[29]

pPD1 58 E. faecalis 39–5 cPD1 (FLVMFLSG) bac21 [30–33]

pMB2 58 E. faecalis S-48 cPD1 AS–48 [28,34]

pYI14 61 E. faecalis YI714 cPD1 bac41 [35]

pEJ97-1 11.3 E. faecalis EJ97 cPD1 Enterocin EJ97 [36]

pAD1 60 E. faecalis DS16 cAD1 (LFSLVLAG) uvrA
Cytolysin

[37,38]

pTEF1 66.3 E. faecalis V583 cAD1 Tn4001
qacZ
Erythromycin resistance

[6,39,40]

pMG2201 65.7 E. faecalis NKH15 cAD1 ermB
Cytolysin

[22]

pBEM10 70 E. faecalis HH22 cAD1 Tn4001
bla

[41]

pAMγ1 60 E. faecalis DS5 cAD1 uvr
hly–bac

[31]

pJH2 59 E. faecalis JH1 cAD1 hly–bac [42–45]

pIP964 65 E. faecalis cAD1 hly–bac [44]

pTW9 85 E. faecalis cAD1 Tn1546

hly–bac
ermB

GenBank:

AB563188

pOB1 64.7 E. faecalis OG1 cOB1 (VAVLVLGA) hly–bac [22,46]

pYI1 58 E. faecalis cOB1 hly–bac [46]

pTEF2 57.7 E. faecalis V583 cOB1 Unknown [39]

pAM373 36.7 E. faecalis RC73 cAM373 (AIFILAS) uvrA [47,48]

pAM368 107 E. faecalis 368 cAM373 Tn1546- like [49]

pSL1 128 E. faecalis KV1 cSL1 Tn1546- like

ermB
aph(30)
ant(60)
aac(60)–aph(20)

[50]

pSL2 128 E. faecalis KV2 cSL1 Tn1546- like

ermB
aph(30)
ant(60)
aac(60)–aph(20)

[50]

pAM323 66 E. faecalis HH2 cAM323 Erythromycin resistance [41]

pAM324 53 E. faecalis HH2 cAM324 None [41]

pHKK100 55 E. faecium 228 cHKK100 Tn1546 [51]

pYI2 56 E. faecalis cYI2 hly–bac [46]

pYI17 57.5 E. faecalis YI717 cYI17 bac31 [52]

(Continued)
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cell population [56]. Similarly, pTW9 encodes the type II epsilon/zeta TA loci—a widespread

TA system that maintains plasmids in both gram negatives and gram positives [58].

Within PRPs, there is clearly a reservoir of antimicrobial-resistance genes and potential for

their transfer and maintenance within a population. However, PRP transfer outside of entero-

cocci into unrelated bacteria will likely be impeded by several hurdles. For example, difficulties

in maintaining cell-cell contact could result in ineffective mating, and furthermore, new hosts

may contain CRISPR-Cas systems that destroy ‘foreign’ nucleic acids. Additionally, a number

of host-specific factors, such as the failure of plasmid initiator proteins to interact successfully

with host proteins, may also limit plasmid replication [59].

Coupled to their extensive genome-encoded intrinsic AMR, enterococcal acquisition of

PRPs and their associated antibiotic resistance genes could have environmental, agricultural,

and medical implications [3,4]. Resistant strains from environmental and agricultural sources

could act as direct causes of infection or as vectors for transmission of resistance genes into

human pathogens. In healthcare, for example, infections caused by vancomycin-resistant

enterococci (VRE) are associated with greater mortality rates than those caused by non-VRE

[60,61]. If enterococci can acquire additional resistance genes through a diversity of PRPs, and

stably maintain them, current treatment approaches that rely on the synergistic effect of multi-

ple antimicrobials for VRE (β-lactams combined with aminoglycosides, for example) may

become futile.

Bacteriocins. Bacteriocins are ribosomally produced heat-stable proteins or peptides that

allow competitive inhibition of other bacteria through disruption of the cell envelope. Entero-

coccal genomes encode bacteriocins of varying classes, providing them with a major advantage

in highly competitive environments such as the human intestine [62,63]. Two PRPs, pAD1

and pMG2201, both encode the class I bacteriocin cytolysin (Table 1) that is associated with a

poorer clinical outcome in cases of septicaemia [64]. Furthermore, it has been demonstrated

Table 1. (Continued)

Plasmid Size (Kb) Original Host Pheromone (Sequence If Known) Plasmid Features Reference

pAMγ2 Approximately

60

E. faecalis DS5 cAMγ2 None [31,45]

pAMγ3 Approximately

60

E. faecalis DS5 cAMγ3 None [31,45]

pBEE99 80.6 E. faecalis E99 Unknown uvrA
bee
bac41–like

[23]

pLG1� 268 E. faecium
UW2774

Unknown vanA
ermB
Teicoplanin resistance

hylefm
Varied carbohydrate metabolism

Heavy metal resistance

[53]

pLG2� 62 E. faecium
UW3114

Unknown ermB
Tetracycline resistance

[54]

�Plasmid not formally proven as pheromone-responsive but that contains DNA-binding proteins, a T4SS, and other DNA transfer machinery homologous to that of the

canonical pheromone-response plasmids.

Abbreviations: aac(60)–aph(20), broad substrate range aminoglycoside acetylase and phosphorylase; ant(60), aminoglycoside nucleotidyltransferase; aph(30),
aminoglycoside-modifying enzyme; bee, biofilm enhancer; bla, β lactamase; ermB/C, erythromycin resistance; hly–bac, haemolysin bacteriocin; hylEfm, hyaluronidase;

T4SS, type 4 secretion system; Tn, transposon; uvrA/B, UV resistance; vanA/B, vancomycin resistance

https://doi.org/10.1371/journal.ppat.1008310.t001
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that in a mouse intestine model, E. faecalis harbouring the bacteriocin 21–encoding PRP,

pPD1, outcompetes indigenous E. faecalis cells that lack the plasmid [65].

UV resistance. Some PRPs, such as pAD1, encode UV resistance via uvrA, which shows

homology to the UmuC protein of Escherichia coli [66]. UV damage results in an increased

mutational rate as a result of error-prone repair, and Miehl and colleagues have shown that

UV-irradiated, UV-resistant E. faecalis was more likely to develop spontaneous mutations

facilitating resistance to antibiotics that they were subsequently challenged with, compared to

non-UV-resistant cells [67].

Inter- and intraspecies dissemination of PRP

PRP transfer between closely related enterococcal species is unsurprising, and many cases of

transfer between E. faecalis and E. faecium have been reported [27,68]. However, in liquid mat-

ings, higher rates of PRP transfer from E. faecalis to E. faecium are observed rather than vice

versa [69,70]. This interspecies transfer of PRP is undoubtedly of concern as many environ-

ments host multiple bacterial species simultaneously. Enterococci can also share DNA with

closely related bacteria including members of the staphylococci, in which the transfer of vanA-

mediated vancomycin resistance, albeit in pheromone-independent matings, has been

reported [71,72]. In addition, staphylococci could conceivably take up enterococcal PRPs, and

thus the possibility of PRP-mediated transfer of vancomycin resistance to MRSA is not

completely irrational [49,59]. S. aureus can produce a cAM373-like peptide, and under labora-

tory conditions, E. faecalis containing pAM368 (Tn1546, encoding vanA) can respond to S.

aureus–generated cAM373. Intergeneric studies have utilised pAM373 derivatives and coresi-

dent plasmids because although streptococcal uptake of PRPs may occur, the pAM373 replicon

is nonfunctional in S. aureus [73]. The lipoprotein precursor from which the enterococcal and

staphylococcal cAM373- and cAM373-like peptides, respectively, are derived share no

sequence homology. It has, accordingly, been postulated that the similarities between these

mature heptapeptides are simply coincidental [73,74].

PRPs can also influence the transfer of other mobile DNA elements and plasmids. For

instance, the 153-kb E. faecalis pathogenicity island (PAI) contains numerous other virulence-

enhancing factors and is capable of intra- and interspecies transfer, aided by the plasmid

pTEF2 [54,59]. In E. faecium, pHKK703 can mobilise nonconjugative plasmid DNA

(pHKK702), further widening the collection of potentially pathogenic traits available for trans-

fer to recipient cells [26]. Plasmid pTEF2 can also mobilise a substantial portion of the V583

chromosomal DNA (up to 857 kbp) to a recipient E. faecalis chromosome. Here, the authors

postulate that chromosome-to-chromosome transfer accounts for the emergence of virulent

hospital-derived E. faecalis strains and this is facilitated at least in part by PRPs [75]. Interspe-

cies transfer of chromosomal DNA is rare, as sequence homology is required for the insertion

of new DNA into the chromosome—a barrier for even closely related species. Thus, the contri-

bution of PRP to interspecies DNA mobilisation will be limited, but the role of PRP in DNA

transfer within E. faecalis is less constrained.

Pheromone-induced conjugal transfer of plasmid DNA

PRP transfer occurs between donors (plasmid-containing) and recipient (plasmid-free) cells

via the actions of the plasmid-encoded machinery. During liquid mating, contact between the

donor and recipient cells is maintained by the aggregation substance (PrgB) after cells collide

(see section on Adherence). PrgB is required for successful plasmid transfer in liquid; however,

in solid mating, the solid surface supports cell-to-cell contact without the same requirement

for the aggregation substance [76]. Transfer is initiated by high concentrations of recipient
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cell–produced peptide pheromone, which generally correlates with a rise in recipient cell den-

sity. The inducing pheromones are transcribed from both recipient and donor cell chromo-

somes for pCF10 [31]. However, donor cells produce corresponding inhibitor peptides that

competitively inhibit the inducing pheromones [25].

Unlike pCF10, production of inducing pheromones cAD1 and cPD1 in pAD1 and pPD1 is

shut down in donor cells [32,77]. The following section will consider the key interactions

between plasmid-encoded components that are necessary for the pheromone response and

encoded by the pheromone-responsive genes (prg).

The rival peptides

Plasmid transfer depends on the intracellular concentration of both the pheromone and the

inhibitor peptides for each plasmid. For example, pCF10 transfer is induced by cCF10 and is

inhibited by the plasmid-encoded iCF10 peptide. These competing peptides share various fea-

tures such as their size (between 7 and 8 amino acids in length), composition, and processing,

but contrast in their cellular role. The majority of enterococcal PRPs respond to one of five

identified pheromones (Table 2).

To produce mature cCF10, the pheromone must be cleaved from a lipoprotein precursor in

which it exists as the last seven residues of the lipoprotein signal peptide. The function of these

lipoproteins has not been fully determined, although their presence (bar the pheromone) is

nonessential for PRP uptake. CcfA, the precursor to cCF10, exhibits similarity to the gram-

negative translocase YidC [10] and is secreted in a SecA-dependent manner prior to being

anchored to the membrane by a prolipoprotein diacylglyceryl transferase (encoded by ef1748)

cleavage reaction [81,82]. These anchored inducing peptides are then cleaved once more by

the lipoprotein signal peptidase II (encoded by ef1723) at conserved cysteine residues (Table 2)

[83]. Both inducer and inhibitor precursors are then recognised by the membrane-localised

metalloproteinase, enhanced expression of pheromone (Eep, encoded by ef2380), via their N

termini [84,85] (Fig 1).

Processing and release of the active moieties by Eep is a shared step in the production of

both inducers and inhibitors for pCF10, pAD1, pPD1, and pOB1, but not for pAM373 [11].

Mature—and very hydrophobic—pheromone peptides are then actively transported out of the

cell via the ATP-binding cassette (ABC) transporter PptAB, which is known to transport

cCF10-, cOB1-, and cAM373-inducer peptides [11,80,85,86].

Peptide detection and import

Detection of extracellular pheromones and their corresponding inhibitors is mediated by plas-

mid-encoded receptors but also requires a chromosomally encoded system for active peptide

uptake.

Table 2. Enterococcal pheromone and inhibitor peptides identified to date.

Plasmid Pheromone Inhibitor Reference

pCF10 . . .LLMAGLVTLVFVLSACGT. . . . . .AVVIAITLIFI [24]

pAD1 . . .FAAIALFSLVLAGCG. . . . . .PLITLFVVTLVG [78]

pPD1 . . .GSGLLFLVMFLSGCVKTG. . . . . .ALLFALILTLVS [79]

pOB1 . . .VITVAVAVLVLGACGNKK. . . . . .SLTLILSA [80]

pAM373 . . .FSLLGAIFILASCGIGK. . . . . .SIFTLVA [47]

Mature forms of pheromone and inhibitor peptides are underlined, with conserved cysteine residues highlighted in bold.

https://doi.org/10.1371/journal.ppat.1008310.t002
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The extracellular pheromone-binding protein

Both inducer and inhibitor peptides compete for binding sites on the same extracellular recep-

tor. The plasmid-encoded cCF10 receptor, PrgZ, exhibits a slightly higher affinity for inducer

cCF10 over inhibitor iCF10. The binding pocket within PrgZ is narrow and both cCF10 and

iCF10 possess a conserved threonine at position three. This very hydrophilic residue is

hypothesised to be important for PrgZ-specific interactions, with peptide specificity thought to

arise from the size, shape, and charge of amino acid side groups [12,87].

Plasmids pAD1 and pPD1 both encode a protein designated TraC as the surface receptor,

and these share 71% sequence identity [88]. The pAD1- and pPD1-encoded TraC also share

72% and 87% identity, respectively, to PrgZ. Upon recognition of the peptides, PrgZ/TraC

then recruit the chromosomally encoded oligopeptide permease (Opp) machinery for active

transport of peptides into the cell [12,88,89].

Fig 1. Model for induction of conjugation genes in pCF10. (A) Chromosomally encoded CcfA lipoprotein (grey) is exported to the extracellular

region, where it is attached to the lipid membrane by Pdt. Subsequently, Lsp II cleaves the precursor on its cysteine residue before mature cCF10 is

cut from the lipoprotein by Eep. Hydrophobic cCF10 is actively transported out of the cell through PptAB. Exogenous cCF10 (grey) is recognised

by pCF10-encoded and externally presented PrgZ and is then passed to Opp for active uptake. In cCF10 absence, the PrgX tetramer is bound in a

1:1 ratio with iCF10 peptides (blue) and maintains tight binding to the pCF10 DNA through binding sites XBS1 and XBS2, thereby sterically

inhibiting the binding of RNAP. (B) Within the induced state, the PrgX/cCF10 complex replaces the PrgX/iCF10 complex on the pCF10 DNA.

The PrgX/cCF10 complex fails to maintain tight binding to XBS2, allowing RNA polymerase to access and then transcribe the downstream

conjugation inducing genes. Eep, enhanced expression of pheromone; Opp, oligopeptide permease; Pdt, prolipoprotein diacylglyceryl transferase;

Prg, pheromone-responsive gene; RNAP, RNA polymerase; T4SS, type 4 secretion system; XBS, PrgX binding site.

https://doi.org/10.1371/journal.ppat.1008310.g001
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The Opp import system

The Opp system belongs to the ABC family of transporters and comprises five proteins

encoded by a single operon [90]. The lipoprotein OppA is usually responsible for capture of

target peptides; however, in the pCF10 pheromone system, PrgZ dominates in this role.

OppA is not selective with respect to substrate binding and is able to bind a range of pep-

tides up to 35 residues in length [91,92], and therefore, the selectivity of the PRP system

derives from the main peptide receptor PrgZ/TraC. Subsequently, PrgZ/TraC deliver

bound peptides to the inner membrane for translocation by OppB and OppC proteins, with

energy for the process coming from the cytoplasmic ATP-hydrolysing components OppD

and OppF [93]. Interestingly, E. faecalis mutants lacking PrgZ/TraC were still inducible,

albeit they required a 4-fold higher exogenous concentration of their respective pheromone

than the wild type. Pheromone recognition in the absence of PrgZ/TraC is thought to occur

through OppA alone [32,89].

Induction of conjugative genes

The active uptake of pheromones by donors allows cells to respond to even low levels of sur-

rounding pheromones: under laboratory conditions, this is equated to around five pheromone

molecules per donor [94]. In the case of cCF10, this peptide pheromone prevents the transcrip-

tional regulator PrgX from continuing to repress the conjugation genes, thereby allowing con-

jugation to occur.

Homologues of PrgX (TraA genes) are found within pPD1 and pAD1 plasmids, highlight-

ing the importance of the repressor function in the uninduced state [77,95].

Recent work [96] suggests that donor cells within a population contain slightly different

ratios of the inducing and inhibiting pheromones as well as differences in concentrations of

the internal repressor PrgX. This leads to a stochastic cell distribution with some cells exhibit-

ing quicker responses to cCF10 than others [96].

The uninduced state. PrgX is a dimeric DNA-binding protein encoded on pCF10 (TraA
in pPD1 and pAD1) and belongs to a family of peptide-binding regulators (RRNPP) [97,98].

Two dimers of PrgX (tetramer) bind to PrgX binding site (XBS) operator sites XBS1 and XBS2

on pCF10. XBS1 and XBS2 are 70 bp apart and on the same DNA strand of pCF10, and thus,

tetramer binding forms a loop in the DNA. XBS2 overlaps the PrgQ promoter (PQ); hence,

both PrgX and RNA polymerase compete for binding [99–102]. Until recently, it was not

known how two very similar pheromone peptides could regulate the transcription of the

pCF10 conjugative genes [103]. In the uninduced state, the PrgX tetramer configuration is

promoted by the binding of iCF10 to PrgX in a 1:1 ratio (Fig 1) [101]. Binding of iCF10 to

PrgX is stronger (than cCF10 binding) and stabilises the alignment of all PrgX monomers on

the same spatial plane, thereby favouring a tight bond between PrgX and XBS2, which prevents

RNA polymerase binding to PQ through steric hindrance. Thus, iCF10 favours repression of

the conjugation genes encoded in PQ [104–106]. The PrgX/iCF10 complex can inhibit 90%–

95% of PQ transcription [102], and thus—although the precise nature of the PrgX interaction

with DNA is yet to be fully elucidated—iCF10 functions to inhibit conjugative transfer of

pCF10 when the donor cell population is higher than that of the recipient [107].

The induced state. In the induced state, PrgX/cCF10 replaces PrgX/iCF10 on the plasmid

DNA. Within PrgX/cCF10, the PrgX tetramer proteins are no longer spatially aligned as they

are in the iCF10 complex, with one dimer being rotated out of the alignment plane (Fig 1).

The rotational stress on the DNA molecule renders PrgX unable to maintain tight binding

with XBS2, enabling RNA polymerase to compete successfully for binding at PQ. This allows

transcription of the conjugation-initiation genes prgR-prgT [104–106]. Chen and colleagues
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note, however, that further experiments are required to elucidate whether PrgX tetramer disso-

ciation also contributes to transcription initiation [106].

Conversely, in pAD1-containing cells, conjugation initiation relies simply upon TraA dis-

sociation from DNA upon cAD1 binding [77]. Distinct yet again from this is TraA in pPD1, in

which three DNA-binding sites, rather than two, control conjugation gene regulation [95].

Conjugation and plasmid transfer

The PrgQ operon, under control of PQ, contains all the genes responsible for pCF10 transfer in

its 30 end. These genes can be organised into four functional categories (Fig 1). The 50 region is

regulatory and is followed by the adherence module, which mediates cell aggregation. The dis-

tal end of the operon encodes the plasmid mobilisation genes, consisting of a type 4 secretion

system (T4SS) utilised as a bacterial mating channel between donor and recipient cells, in addi-

tion to plasmid processing genes [20].

Adherence. In pCF10, the prgB gene encodes the aggregation substance PrgB, which

becomes dispersed evenly over the cell surface with the exception of the septal ring [108]. This

protein is homologous with Asp1 in pPD1, Asa1 in pAD1, and Asa373 in pAM373, and all con-

tain an LPXTG motif that facilitates cell wall anchoring [95]. PrgB and Asp1 contain two argi-

nine–glycine–aspartic acid (RGD) elements, one towards the N terminus and the other at the C

terminus (Asa1 contains only one RGD; Asa373 does not contain an RGD) [48,109] (UniProt:

P17953 and Q47766). These RGD motifs permit attachment to human integrin molecules; how-

ever, the N-terminal RGD in PrgB is more important for this than the C-terminal motif [110].

Endocarditis studies in rabbits and internalisation studies in human neutrophils have, however,

emphasised that expression of PrgB by E. faecalis increases virulence, presumably by facilitating

interactions with host cells via the RGD motifs [111]. E. faecalis generates the aggregation sub-

stance on its surface following exposure to both bovine and human serum—occurring in the

absence of pheromone and for, presumably, the sole purpose of increasing virulence [112].

Domain Asc10(156–358) within PrgB mediates binding to enterococcal cell walls, thus promoting

cell-cell contact between donor and recipient cells, an observation confirmed by mutational

studies that demonstrated a 100-fold reduction in pCF10 transfer in a prgB deletion mutant.

Cell-to-cell adherence via PrgB is vital for successful plasmid transfer in liquid matings, but

PrgB is not required for solid-surface matings [113].

Plasmid processing. pCF10 plasmid transfer is initiated by the accessory protein PcfF

(belonging to the MobC accessory protein family) and the relaxase PcfG. TraX is the relaxase

in pAD1 and is related to the relaxase from pAM373 (Orf8); however, both TraX and Orf8

share very little amino acid sequence homology with PcfG on pCF10 [114].

PcfF and PcfG function by binding to the origin of transfer (oriT) and cleave pCF10 within

the nick region releasing the DNA strand to be transferred (T strand) [106,115]. Following

cleavage, PcfG remains attached to and stabilises the 50 end of the T strand, forming the PcfG–

T strand intermediate. It is thought that the role of PcfG is to guide the T strand through the

mating channel and into the recipient cell, and it is also suggested that PcfG stimulates recircu-

larization of the transferred plasmid DNA, given the observation that it can rejoin nic sites in

vitro [106].

Plasmid transfer has scarcely been characterised for other plasmids, though there are data

available on pAD1, which has two oriT sites, the second of which is thought to be favoured for

interspecies transfer [48,116]. Plasmid processing genes within several PRPs show limited

homology, and indeed, the pCF10 relaxase PcfG is more closely related to the Lactococcus lactis
pRS01-encoded relaxase LtrB, with which it shares 52% amino acid identity [117]. Analysis of

sequenced PRPs indicates that regulatory regions within PRPs derive from a shared ancestor
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(within at least pCF10, pAD1, pAM373, and pPD1). However, plasmid evolution through

incorporation of new DNA and frequent recombination has given rise to a diverse set of plas-

mids with vastly different processing modules [24]. This functional gain accounts for the num-

ber of antibiotic resistance genes and virulence factors encoded on many PRPs [22].

T4SS. T4SSs (reviewed extensively elsewhere [118]) are versatile and can function as con-

jugative systems, substrate uptake mechanisms, or general translocators. The pCF10 T4SS

encoded between prgF–pcfC shows strong homology to the VirB/D4 T4SS found in the gram-

negative Agrobacterium tumefaciens [24]. Openings in peptidoglycan are essential for T4SS

assembly, and PrgK, which contains peptidoglycan hydrolase domains, is suggested to stabilise

the junction between mating cells [119]. The hexameric PcfC (VirD4-like) and PrgJ (VirB4--

like) ATPases are thought to provide energy for the physical transfer of pCF10. The structure

of PcfC has been elucidated, revealing a 7-α helix component that confers substrate specificity,

in addition to a channel-activation function [120]. The current working theory is that PcfC (a

type IV coupling protein) recruits the PcfG–T strand intermediate via PcfG and delivers the

complex to PrgJ. However, whether the PcfG–T strand intermediate is targeted via PrgJ to the

recipient through the PcfC hexamer or whether this occurs through the T4SS inner membrane

complex is still unknown [103,121,122].

System maintenance and prevention of self-induction

The act of conjugation places a large metabolic burden on donor cells, and thus, tight regula-

tion of PRP conjugative genes is necessary. This control is mediated at the level of transcription

by independently transcribed short RNAs and also via negative regulation of prgB expression.

RNA-mediated control. Control of conjugation at the level of transcription is directly

influenced by the PrgX/TraA molecular repressor in addition to levels of exogenous phero-

mone (Fig 1). In pCF10-containing cells, the uninduced state is characterised by significant

intracellular quantities of short Q (Qs, 380-nucleotide [nt] RNA), from the PQ regulatory

region. On the 30 end of the QS, RNA is an inverted repeat sequence (IRS1) of a putative termi-

nator [123]. To induce plasmid transfer, however, transcription must continue past IRS1 to

the conjugation genes. Nascent PrgQ can form two secondary structures, one of which pro-

motes transcriptional termination at IRS1, whereas the other encourages antitermination and

thus permits transcription of conjugation genes. On the opposite DNA strand of pCF10 and

220 bp upstream is the promoter PX, from which PX Anti-Q is transcribed, in addition to the

mRNA for PrgX (or TraA for pAD1) from the 30 end [123,124]. Anti-Q RNA (mD in pAD1) is

unaffected by cCF10 presence, possesses a polyuridine tract, has a branched secondary struc-

ture, and is antisense to PrgQ mRNA. Anti-Q RNA therefore interacts with nascent PrgQ tran-

scripts, favours the formation of the termination configuration, and prevents transcription

past IRS1. Together, these prevent unnecessary transcription of conjugative genes from pCF10

[125].

In the presence of recipient cell–generated cCF10, however, the quantity of nascent PrgQ

transcripts increases, but the level of Anti-Q RNA remains constant. The surplus PrgQ RNA

takes the antitermination form that allows transcription to continue past IRS1 in order to pro-

duce the 530-nt long Q (QL) RNA. QL is hypothesised to combine with ribosomes to effect the

translation of mRNA for conjugation components [123–125].

pAD1, however, makes use of TraE1 (promoting conjugative gene transcription), which is

repressed by TraA. Similarly, two transcriptional termination sites are present on pAD1 (T1

and T2) [125,126].

Aggregation substance regulation. Recently, Bhatty and colleagues [127] identified PrgU

as a regulatory protein in pCF10. The prgU gene is located within the adherence module;
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however, it can also function as a negative regulator of the aggregation substance, PrgB. A lack

of PrgU (and hence overproduction of PrgB) in the presence of cCF10 results in serious dis-

ruption of cell growth in deletion mutants [127]. How PrgU interacts with and regulates PrgB

is yet to be elucidated, but structural analysis has shown that PrgU possesses a pseudouridine

synthase as well as an archaeosine transglycosylase (PUA) fold, both known to be associated

with RNA binding. Bhatty and colleagues suggested that, on this basis, PrgU may interfere

with PrgB mRNA or alternatively work to stabilise the Qs and Anti-Q interaction [127].

The importance of this regulation is underlined by the presence of prgU homologues within

other PRPs. Plasmids encoding genes of similar amino acid sequence to prgU include pTEF2

(100% identity), pBEE99 (97% identity), pTEF1 (96% identity), pAD1 (96% identity), and

pTW9 (96% identity).

Endogenous pheromone degradation. PrgY is a pCF10-encoded membrane-localised

peptidase that is thought to function extracellularly to degrade endogenously produced donor

cell cCF10. PrgY is homologous to TraB within pAD1 and pPD1 plasmids, although no PrgY

homologue exists within pAM373 [32,48,85,128]. PrgY is similar the human Tiki metallopro-

tease, but the PrgY active site exhibits no homology to other cCF10 binding proteins (for

example, PrgZ or PrgX). It has been suggested that PrgY binds to and degrades cCF10 after it

has been actively transported out of donor cells, thus preventing increases in the concentration

of cell wall–associated pheromone and ultimately reducing the probability of these peptides

being recognised by pheromone receptors on other donor cells [129,130].

Future directions

The presence of TA systems of various classes within several PRPs could facilitate foundation

work on chromosomal TA system exploitation given the high level of homology between

many chromosomal and plasmid TA systems. Some data appear to suggest VRE contain a

greater assortment of TA systems over susceptible enterococcal isolates; thus, TA systems have

been suggested as possible antimicrobial targets [131]. Kang and colleagues discussed the

design of small molecules to interfere with the TA complex, allowing for activation of the toxin

and leading to cell death. The authors also suggest an approach to starve cells of antitoxin by

preventing transcription of the TA system through binding of a molecule to the system pro-

moter [132]. Importantly, TA mechanisms are not homologous with any human systems, rein-

forcing their possible therapeutic exploitation.

PRPs have the potential to contribute to the rising levels of resistance observed in healthcare

and environmental enterococcal strains. However, our knowledge of PRP transfer under con-

ditions reflective of environments native to Enterococcus spp. is incomplete. Baquero and col-

leagues extensively reviewed the need for new drugs or strategies to limit the spread of AMR—

and the authors suggest that in the case of PRPs, this could consist of conjugation inhibitors

[133]. Indeed Kohler and colleagues recently noted that pheromone diversity between PRPs

will limit broad-spectrum peptide mimicry inhibitors [99]. Thus, work aimed at more widely

conserved regions (such as PrgU and its homologues) may provide the basis for a one-size-

fits-all transfer inhibitor. However, development of such an inhibitor will require full investi-

gation of the less well-studied PRPs considered within this review. Such work could contribute

significantly to the generation of inhibitors and would be crucial for the control of PRP-medi-

ated AMR and vital in prohibiting PRP distribution.
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