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Abstract 

Small non coding RNA molecules are widespread in all kingdoms of life, 

where they serve to regulate and fine tune gene expression.  They can act in cis or 

trans, depending upon their structural relationship with genes whose expression they 

influence, and function by interacting with target messenger RNA molecules to inhibit 

or accelerate translation.  Thus, they can exert rapid control on cellular protein levels.  

Within bacteria, many sRNAs have been described in Gram negative model 

organisms but developments in our understanding of their role in Gram positive 

organisms has been slower.  It is clear that sRNAs influence a wide range of cellular 

processes, including adaptation to environmental stresses, and virulence processes 

in pathogens.   

Historically, identification of sRNAs has been challenging but recent 

developments in sequencing technology and computational analysis have led to over 

45000 predicted sRNAs being catalogued in the last few years.  However many of 

these in silico predictions are yet to be validated and the complexity, in terms of 

sRNA interactions with gene networks, means we are really only beginning to 

understand how wide-ranging their effects can be within bacteria.  It is clear that 

sRNAs play a critical role in all aspects of bacterial physiology.  Within the genus 

Clostridium, the role of sRNAs in the pathogens C. perfringens, C. botulinum and C. 

difficile is much less well understood, despite hundreds of sRNAs having been 

predicted within these organisms.  These predictions represent a platform for novel 

discoveries regarding post transcriptional regulatory strategies mediated by these 

molecules in Clostridia.   

Keywords: Regulatory RNA, Post transcriptional regulation, Stress, Virulence, 

Riboswitch, Clostridium, difficile



Introduction. 

The genus Clostridium encompases a heterogeneous group of Gram-positive 

endospore forming obligately anaerobic microorganisms that are ubiquitous in soils 

and the intestines of higher organisms.  Certain species are economically useful and 

relatively benign – for example, C. acetobutylicum, C. beijerinckii and C. 

cellulovorans are employed in the industrial production of biofuels1. However the 

genus is also infamous for the toxin-producing pathogens C. difficile, C. perfringens 

and C. botulinum, whose yearly socioeconomic impact is considerable2,3.  C. difficile 

infection (CDI) causes infectious diarrhoea with associated abdominal pain, cramping 

and low grade fever up to 40.6°C4.  C. difficile pathogenesis and many of the factors 

underlying CDI are well understood, but CDI can still be life-threatening if not treated 

promptly2,4,5.   

The availability of well over 30 C. difficile genome sequences6-9 has afforded 

researchers excellent opportunities to better understand the evolution and lineages of 

these organisms.  Generation of comparative functional genomics datasets has 

lagged somewhat and as a consequence, comparatively little is known about the 

adaptive ability of C. difficile.  Thus in our laboratory we have taken a systems 

approach to understanding the response of C. difficile to clinically relevant heat 

stress, using comparative  proteomics and transcriptomics10,11.  While a classical 

heat shock response and class I chaperone induction was observed at 41°C, we also 

observed downregulation of the flagellum, FliC (CD0239) and several other 

recognised virulence factors, such as cwp20 (CD1469), cwp5 (CD2786) and TcdA 

(CD0663), strengthening the hypothesis that virulence of C. difficile is ‘set’ at 37°C.  

We also determined that the correlation between changes in protein abundances and 

their cognate transcripts was inconsistent.  Several factors could explain this 



observation including protein/mRNA stability, transcription efficiency or unrecognised 

post-transcriptional regulatory mechanisms12.  Recently Chen et al.13 demonstrated 

the presence of small, non coding, regulatory RNA molecules (small RNAs, sRNAs) 

in C. acetobutylicum and proposed a role for them in gene regulation in this 

microorganism.  This review seeks to provide an overview of the key elements of 

sRNA biology and to summarise what is known of their role in Clostridia. 

 

What are Small RNAs? 

Eukaryotic sRNAs 

Small non coding RNAs, including microRNAs (miRNAs) and small interfering 

RNAs (siRNAs) have been identified as regulators of a variety of cellular processes 

in plants and animals14.  First described in Caenorhabditis elegans15 several hundred 

miRNAs, generally ~21-22 nucleotides in length, have now been described.  They 

are generated by cleavage of longer, precursor RNA transcripts that have formed a 

self complementary foldback loop by the RNAseIII-like enzyme Dicer, and function by 

base pairing with target mRNA, initiating its degradation.  Small interfering RNAs 

(siRNAs, <30 nucleotides) are generated by Dicer mediated cleavage of double 

stranded RNA and play a role in RNA interference (RNAi) via the RNA-induced 

silencing complex (RISC), where they guide sequence-specific cleavage of RNAs.  

Thus these small RNAs are functionally interchangeable.  miRNAs have also been 

predicted and experimentally verified in DNA viruses, with the herpesviridae 

containing the largest number of viral miRNAs: for such viruses that undergo 

persistent infection, the invisibility of miRNAs to the adaptive immune response is a 

useful trait16,17.  Indeed, the fact that double stranded (ds) RNAs are quite stable in 

vivo and non immunogenic means that RNAi has great potential for therapeutic 



use18,19.  It is known that miRNAs encoded by both host and infecting viruses enable 

these protagonists to do battle with each other during infection20 and as a result, 

miRNA profiles are becoming recognised as novel means of diagnosis21. 

 

Prokaryotic sRNAs 

Small RNAs were initially identified in bacteria with the identification of 6s RNA 

in E. coli22 but it is only relatively recently that their influence on bacterial cellular 

processes and their varied modes of action have become recognised23.  In contrast 

to shorter eukaryotic or viral miRNAs, bacterial sRNAs (i.e. not tRNA, rRNA or 5S 

RNA) are typically between 50 and 500 nucleotides in length and as with many 

developments in microbial sciences E. coli was, and is, the model organism for study 

of sRNAs.  Knowledge of sRNA biology in Gram positive organisms and in archaea 

has developed more slowly, due in part to a lack of efficient genetic tools24,25.  Initial 

elucidation of an individual sRNA’s function in E. coli came in 1984.  Mizuno and 

colleagues26 showed that an mRNA-interfering complementary RNA (micRNA) that 

was complementary to the 5' end region of the ompF gene mRNA, served to inhibit 

production of the ompF protein by interfering with translation.  This new field of RNA 

biology, dubbed RNOmics27 has since developed and expanded exponentially 

assisted in no small part by technical advances in DNA sequencing technologies and 

the development of computational algorithms for identification of sRNA sequences in 

genomic information (Figure 1). 

 

Functionality of bacterial sRNAs. 

Bacterial sRNAs regulate and fine tune gene expression in bacteria and it is 

thought that they enable a faster response to changing conditions at relatively low 



metabolic cost.  Functional RNA molecules require only limited transcription energy 

compared to other cellular regulatory mechanisms and in addition, less time is 

required for a sRNA to be produced and to impact upon target protein levels28.  A 

wide range of environmental stimuli impact upon sRNA expression and it is not 

surprising that many sRNAs are associated with bacterial stress responses29.  

sRNAs can exert global effects on gene expression.  In the oxidative stress response 

in E. coli, for example, the 109 nucleotide OxyS sRNA is transcribed divergently 

from, and regulated by, the oxyR gene encoding the redox-sensitive transcriptional 

regulator which is the actual sensor of the oxidative shock.  Upon expression of oxyS 

sRNA, translation of rpoS is inhibited with rapid and global effects upon cellular 

physiology29,30.  In E. coli, FlhDC – the master regulator of flagellar biosynthesis – is 

regulated by multiple protein transcription factors that respond to different 

environmental stimuli including cell envelope stress and salt concentration.  However 

the recent work of De Lay and Gottesmann31 has shown that complexity, and thus 

regulatory power, is increased because the 5' untranslated region (5’ UTR) of the 

flhDC mRNA is also subject to negative regulation by six different sRNA molecules 

(ArcZ, OmrA, OmrB, OxyS, SdsR and GadY) and positive regulation by one (McaS).  

Thus, the flhDC mRNA serves as a hub that allows integration of signals derived 

from environmental salt and oxygen concentrations, oxidative insult and the general 

stress response, into the decision to make flagella.  The question of whether the 

flagellum is a primary C. difficile virulence factor is open to debate11, but a flagellar 

filament requires some 2% of a bacterial cell’s total energy consumption under 

optimal growth conditions, in order to synthesise the necessary ~20,000 subunits of 

FliC protein: it is clear why such precise regulation of flagellar biosynthesis might be 

necessary.  It has been suggested that up to ~300 sRNAs will be present in the 



average bacterial genome, a number equivalent to the complement of transcription 

factors32.  As exemplified above, however, these sRNAs have many times the 

potential regulatory capacity of protein transcription factors and thus they are clearly 

of critical importance in bacterial physiology.   

 

How do sRNA molecules exert their biological effect? 

In the Gram-positive bacterial pathogens in which sRNAs have been 

characterised to date, their biological functions have been linked to adaptation or 

virulence.  For example, in C. perfringens, the VR-RNA sRNA regulates collagenase 

and alpha toxin gene transcription33.  Like Gram-negatives, Gram positive bacteria 

have many sRNA-mediated regulatory mechanisms that allow response to 

environmental and intercellular signals via a number of different mechanisms24.  

Bacterial sRNAs are generally found in the intergenic regions of the genome and 

they fall into two main categories depending upon their genomic context in 

relationship to the target gene.  Those that are transcribed independently from the 

target gene are encoded in trans, while those that are co-transcribed, usually from 

within the 5’ UTR of the target transcript, are encoded in cis29 (Figure 2).  Cis 

encoded sRNAs can also be transcribed from the antisense strand at the same 

genetic locus as the target and these antisense RNAs (aRNAs) will therefore exhibit 

perfect complementarity with their target, allowing interactions that impact positively 

or negatively upon gene expression32,34. Cis and trans sRNAs can be further 

categorized into two subgroups based upon their mode of action.  Certain sRNAs 

pair with mRNA targets to affect their stability or translation while others act as 

molecular decoys that bind to protein targets and affect their activity35-39 (Figure 3).  

RNA thermosensors (Figure 4a) have been demonstrated to play pivotal regulatory 



roles in not only the heat stress response, but also in the coordination of expression 

of virulence genes in number of human pathogens40,41 while Riboswitches, a further 

class of cis acting RNA element, control expression of downstream genes via 

metabolite-induced alteration of sRNA secondary structures (Figure 4b).  

Riboswitches can function in a variety of ways but in brief, different metabolites can 

allow them either to induce or repress transcription or translation, as recently 

reviewed by Serganov and Nudler42.  The bacterial sRNAs that have been 

characterised in Gram positive microorganisms are expressed mainly in a growth 

phase-dependent manner and while it may be hypothesised that, like in E. coli, they 

are part of complex regulatory processes our current knowledge of factors affecting 

sRNA expression in Gram positive bacteria is lacking24.  Thus, while sRNAs have 

been characterised in Bacillus subtilus, Listeria monocytogenes, Staphylococcus 

aureus, Streptococcus pyogenes, Clostridium acetylobutylicum and Clostridium 

perfringens, very little is known about their role in C. difficile.   

 

The role of the Hfq RNA chaperone protein.  

While sRNA modes of action are fairly similar between Gram positive and 

Gram negative bacteria, one aspect of sRNA biology that is less well conserved is 

the role of the Hfq RNA chaperone.  Hfq is highly conserved in prokaryotes and 

belongs to the Sm family of proteins that are known to interact with RNA in both 

eukaryotes and prokaryotes43.  Hfq has been shown to interact with a considerable 

number of trans encoded sRNA molecules in Gram negative microbes, where it plays 

a key role in stabilising sRNA molecules or facilitating interaction with mRNA 

targets24,44.  Thus, Hfq plays a key role in one of the most complex post 

transcriptional networks known45.  In low GC Gram-positive bacteria, however, the 



function of Hfq is still unclear43 although in L. monocytogenes, Hfq is required for 

function of several sRNAs (LhrA–C)46.  However, other L. monocytogenes sRNAs do 

not require Hfq for target interaction47 and in S. aureus, Hfq does not seem to be 

required for sRNA-mRNA interactions at all48.  There is also the consideration that 

not all bacterial genomes contain an Hfq homologue, raising the possibility that other 

proteins may be able to substitute for Hfq in certain organisms49.   

 

Identification and validation of sRNAs in bacteria. 

Initial identification of sRNAs in bacteria is challenging, not least because until 

recently there was no general approach that provided a comprehensive solution to 

their prediction21.  Furthermore, sRNA target prediction is awkward because many 

sRNA:mRNA hybridisations occur over relatively short regions of imperfect 

complimentarity50.  The initial work on sRNAs some 40 years ago used gel 

electrophoresis to fractionate radiolabelled total bacterial RNA, followed by elution of 

low molecular mass RNA molecules from the gels and subsequent analysis51.  In the 

30 years since their first discovery, only around a dozen sRNAs were identified and 

characterised in E. coli but since then, developments in genomics and computational 

biology have allowed the field of sRNA biology to expand massively.  In the past 

decade or so, sRNA gene finders based upon well-characterised sequences and 

algorithms to predict the minimum free energy of structured RNAs have been applied 

to newly catalogued bacterial genomes52,53.  In addition, comparative genomics 

approaches that allow researchers to make sRNA predictions based upon the 

presence of rho independent terminators and promoters and other features in the 

intergenic regions have also been used to predict sRNAs13,50,54.   



A workflow for sRNA characterisation, therefore, might proceed from in silico 

identification of sRNAs to demonstration of their expression by qRT-PCR or Northern 

Blotting and the subsequent identification of direct and indirect targets of individual 

sRNA molecules using in silico prediction algorithms followed by wet lab methods to 

validate the interactions.  For example, in the work of Chen et al.,13 the only report to 

date on genome wide characterisation of sRNAs in clostridia, in silico methods were 

used to predict sRNAs in 21 clostridial species.  The authors then used qRT-PCR to 

validate 30 sRNAs of 113 predicted in C. acetobutylicum, and 21 from C. botulinum, 

thus showing that qRT-PCR is a useful first screening step.  Highly expressed sRNAs 

(by qRT-PCR) were then analysed using Northern blotting to validate transcript sizes 

against those predicted by the in silico analysis.  A number of additional experimental 

approaches can also be used including tiling oligonucleotide microarrays, cDNA 

cloning and high throughput RNAseq54-56.  In addition, the identification of sRNA:Hfq 

associations can provide further evidence that transcripts are sRNAs45.   

 

Databases for sRNA research. 

Concomitantly with these predictive methods and experimental validations, the 

development of user friendly, browser based databases and software tools to allow 

information retrieval and analysis has proceeded apace.  As with other post-genomic 

fields, for example mass spectrometry-driven proteomics,57 these developments have 

been crucial to the expansion of sRNA biology as a field of research.  Within even the 

last few years, the number of sRNAs identified in a wide range of bacteria, including 

in Gram positives, has increased at an incredible rate.  A natural consequence of this 

success is an increasing urgency for identification of their cellular targets and 

functional roles, a facet of the research which has lagged considerably behind 



identification studies58.  A number of groups have presented a variety of tools for the 

purposes of sRNA identification59.  One of the longest standing is the Rfam database 

(http://rfam.sanger.ac.uk), a collection of non-coding RNA families represented by 

multiple sequence alignments and secondary structure predictions that was first 

developed a decade ago60,61.  The work of Livny et al. introduced the powerful SIPHT 

tool (sRNA identification protocol using high-throughput technologies), which 

incorporates a number of programs and adjustable search parameters to identify 

sRNAs and other features in an automated fashion50.  SIPHT identifies conserved 

sequences along with rho independent terminators and promoters in intergenic 

regions and incorporates BLAST, genomic synteny and transcription factor binding 

site analyses into a workflow that yields an output that can be opened in Excel.  This 

work has allowed prediction of candidate sRNA encoding loci from over 900 bacterial 

genomes and plasmids within the NCBI database, thus expanding the number of 

predictions from several hundred candidate sRNAs to over 45,000.  However all 

databases will have perceived drawbacks, regardless of how they are implemented.  

They might not allow further analysis, or they may be restricted to a limited number of 

bacterial species, or be reliant upon published data.  Two recent publications have 

sought to redress this deficiency: sRNAdb, developed by Pischimarov and 

colleagues50 is a user-friendly searchable database allowing comprehensive 

comparative analysis of sRNAs from Gram positive microorganisms.  In addition, 

further features of interest may be incorporated by the end user into a local 

customised database.  The work of Li et al. describes BSRD – a repository for 

bacterial small regulatory RNA62 which is said to contain more experimentally 

validated sRNAs than any other database and enables researchers to identify and 

characterise sRNAs in large scale transcriptome sequencing projects.  Thus, 



researchers interested in a particular bacterial group now have at their disposal a 

comprehensive range of predictions, databases and in silico analysis tools to 

underpin their investigations.   

 

Identification of sRNA targets – dissection of roles and functions. 

Having validated the existence of a population of sRNAs, there remains the 

issue of what individual sRNA molecules actually do.  It is clear that only a relatively 

small proportion of the sRNAs predicted to date have had their targets experimentally 

verified, although targets can initially be inferred computationally.  Many sRNAs are 

antisense regulators and bioinformatics searches for complementarity can assist with 

target identification – although in reality, the base pairing between sRNAs and their 

targets is often imperfect, making this task difficult58.  One such tool, sTarPicker, is 

based upon a mathematical model of hybridisation between sRNA and mRNA and is 

said to predict sRNA targets with higher efficiency than competing programmes63.  

sRNATarBase, developed by the same group, seeks to provide a resource of sRNA 

targets that have been experimentally verified, thus providing support for predictive 

models and subsequent in silico and functional analyses.  The authors systematically 

and manually collected sRNA:target interaction data from published papers in order 

to develop their database of sRNA targets64.  However, where targets are as yet only 

inferred, is still necessary to validate these sRNA:target predictions and to this end, 

several interesting approaches can be used.  In addition, the determination of what 

constitutes a primary target (direct interaction with the sRNA) and what is a 

secondary target, such as a transcription factor, is also of considerable importance58.   

Analysis of the sRNA and proposed target mRNA expression under different 

conditions is one approach to target identification.  As reported by Chen et al., a 



conserved novel sRNA (CAC610) in C. acetobutylicum and a downstream gene 

(CAC0528) both responded to the antibiotic clindamycin.  As the distance between 

the sRNA and the gene was conserved across a number of clostridial strains at 

~185bp (although neither exist within in C. difficile), the authors concluded that there 

was a functional relationship between the two, although the exact mechanism by 

which the sRNA might modulate gene expression (or vice versa) was not 

determined13.  Another method for determination of sRNA targets has been 

described as a ‘biochemical fishing expedition’.  The use of sRNA molecules as the 

bait in order to capture a mRNA target is an approach that can be further refined by 

incorporating a recombinant affinity tagged Hfq protein.  As many sRNAs interact 

with Hfq, its subsequent purification, complete with sRNA and the sRNA target, can 

allow sRNA target identification.  In this instance, creation of cDNA clones, and their 

hybridisation to whole genome microarrays could be employed65.  Functional 

genomics analyses, for instance with mutants constructed in validated sRNA 

encoding regions of the genome, allows the subsequent determination of the effect of 

these deletions on both host cell physiology and on the expression of predicted 

targets66,67.  With mutants in hand, tiling oligonucleotide microarrays, or RNAseq 

analysis, would provide a genome-wide picture of their effect.  Furthermore, it should 

be possible to experimentally express a high level of a given sRNA in a host cell, and 

compare global cellular responses with those of either the wild type or a deletion 

mutant.   

 

Conclusions and future perspectives 

RNOmics is still a rapidly expanding field and it is clear that advances in our 

understanding will be driven by the use of high throughput post genomic technologies 



such as transcriptome sequencing.  Focus will also be required to determine the 

functions of individual bacterial sRNAs which is a not inconsiderable task given the 

potential for widespread interactions of sRNAs with multiple targets and within gene 

networks.  There is still much to be done to experimentally validate sRNA predictions 

in clostridia, where it appears that the number of sRNAs is related to the physiology 

of the organism.  Greater numbers of sRNAs have been predicted in the genomes of 

pathogenic clostridia – for example C. difficile 630 is predicted to contain 264 sRNAs, 

none of which have been experimentally verified as yet13.  Clostridial sRNAs appear 

to be phylogenetically restricted to these organisms and are not conserved in, for 

example, Bacilli, thus it will be of interest to determine precisely under what 

conditions these sRNAs are expressed, and whether strain to strain variations exist – 

between different C. difficile ribotypes, for example.   

The work so far on C. acetobutylicum suggests that certain sRNAs may play a 

role in antibiotic resistance and this observation provides new avenues for research 

into antibiotic tolerance mechanisms, drug targets and diagnostic methods.  At 

present, there is no data on the role of the Hfq homologues that exist in the genomes 

of Clostridium spp, although with functional genomics tools such as ClosTron68 it 

should be possible to construct gene knockouts and determine the role of Hfq.  Our 

understanding of small RNAs in Clostridia is at present incomplete, presenting the 

research community with an opportunity to define the roles of these molecules within 

these anaerobic microorganisms.  
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Figure 1: The rise in RNomics over the last decade.   

Year on year (a) and Cumulative total (b) publications from the Web of Knowledge 

database that contain both “sRNA*” and “bacteria*” in the title.  It is clear that we are 

in exponential phase of this new and exciting research area and also that there is a 

significant body of literature. 

 

Figure 2:  Generalised genomic context of cis and trans acting small RNAs. 

Cis acting sRNAs are generally found in the 5’ untranslated region of the mRNA 

(5’UTR), although less commonly, they may be encoded in the 3’UTR.  Riboswitches 

and RNA thermometers fall into this class of sRNAs. 

Trans acting sRNAs are encoded in intergenic regions of the genome (characterised 

by the presence of rho independent terminators and promoters in their sequence) 

and are transcribed independently of the target.  They usually act by base pairing 

(often assisted by the Hfq RNA chaperone protein) with the target mRNA, influencing 

the output from that mRNA. 

 

Figure 3:  Small RNA molecules can act to modulate gene expression in a variety of 

ways.   

Base pairing of the sRNA with a target mRNA sequence can lead to (a) termination 

of transcription, (b) degradation of the mRNA, (c) occlusion of the ribosome binding 

site (RBS) and decreased translation or (d) changes in the secondary structure of 

mRNA such that the RBS is more accessible by the 30S ribosome and translation is 

increased.  In an alternative mechanism, the (trans encoded) sRNA acts as a 

molecular decoy – here, binding of an inhibitor protein to the mRNA prevents 



translation but if the inhibitor is sequestered by binding to the decoy sRNA, 

repression is lifted. 

 

Figure 4.  RNA thermometers and Riboswitches are examples of cis encoded small 

RNA molecules.  

(A)  At low temperature, the 30S ribosome is prevented from accessing the shine 

dalgarno (SD) sequence and the start codon (AUG) due to the complex secondary 

structure of the mRNA.  Upon increasing temperature the secondary structure 

gradually melts and the ribosome can access the SD and AUG.  This is thus a faster, 

direct, temperature sensing mechanism which is known to regulate heat shock gene 

expression and virulence in bacteria.  Sequence conservation in the 5’ aptamer 

domain enables database searches for identification of these thermosensing 

elements.  

(B)  Generalised mechanism for expressional control via metabolite binding to cis 

acting riboswitches.  The riboswitch consists of a sensor aptamer domain which can 

bind the metabolite (for example, anions, metal ions, co factors, purines and amino 

acids are all known to direct switching) and an expression platform.  Riboswitches 

sense different concentrations of a single metabolite and upon highly discriminatory 

binding of the metabolite to the aptamer domain, the secondary structure of the 

element changes to allow changes in transcription, translation, splicing and mRNA 

stability.   

 

 

 










