35 research outputs found

    Trait data from Expts 1 and 2

    No full text
    Data from experiments 1 and 2, in separate spreadsheet

    Data from: Direct and indirect transgenerational effects alter plant-herbivore interactions

    No full text
    Theory suggests that environmental effects with transgenerational consequences, including rapid evolution and maternal effects, may affect the outcome of ecological interactions. However, indirect effects occur when interactions between two species are altered by the presence of a third species, and make the consequences of transgenerational effects difficult to predict. We manipulated the presence of insect herbivores and the competitor Medicago polymorpha in replicated Lotus wrangelianus populations. After one generation, we used seeds from the surviving Lotus to initiate a reciprocal transplant experiment to measure how transgenerational effects altered ecological interactions between Lotus, Medicago, and insect herbivores. Herbivore leaf damage and Lotus fecundity were dependent on both parental and offspring environmental conditions. The presence of insect herbivores or Medicago in the parental environment resulted in transgenerational changes in herbivore resistance, but these effects were non-additive, as a result of indirect effects in the parental environment. Indirect transgenerational effects interacted with more immediate ecological indirect effects on Lotus fecundity. These results suggest that explanations of ecological patterns require an understanding of transgenerational effects and that these effects may be difficult to predict in species-rich, natural communities where indirect effects are prevalent

    Data from: Causes and consequences of failed adaptation to biological invasions: the role of ecological constraints

    No full text
    Biological invasions are a major challenge to native communities and have the potential to exert strong selection on native populations. As a result, native taxa may adapt to the presence of invaders through increased competitive ability, increased antipredator defences or altered morphologies that may limit encounters with toxic prey. Yet, in some cases, species may fail to adapt to biological invasions. Many challenges to adaptation arise because biological invasions occur in complex species-rich communities in spatially and temporally variable environments. Here, we review these ‘ecological’ constraints on adaptation, focusing on the complications that arise from the need to simultaneously adapt to multiple biotic agents and from temporal and spatial variation in both selection and demography. Throughout, we illustrate cases where these constraints might be especially important in native populations faced with biological invasions. Our goal was to highlight additional complexities empiricists should consider when studying adaptation to biological invasions and to begin to identify conditions when adaptation may fail to be an effective response to invasion

    Data from: Genetic variation in invasive species response to direct and indirect species interactions

    No full text
    Biotic resistance to invasion arises from strong species interactions that decrease the fitness and population growth rates of potential invaders. Strong, direct interactions such as predation and competition are typically thought to drive biotic resistance, but in diverse communities, indirect interactions among species may also affect biotic resistance. Further, genetic variation in traits of the invading species that affect species interactions may allow some genotypes to overcome biotic resistance. We investigated the direct and indirect effects of a native legume (Acmispon wrangelianus) and insect herbivores on the fitness of different genotypes of an invasive legume (Medicago polymorpha) in a California grassland. Insect herbivores decreased Medicago fitness, but only in the presence of Acmispon, suggesting that indirect interactions mediated through insects and Acmispon are important for deterring Medicago invasion. Some Medicago genotypes were less affected by interactions with other species, however. This genetic variance suggests that while biotic resistance reduced the reproductive success of most genotypes, a few genotypes were able to overcome these complex interactions. However, Medicago invasion was unsuccessful in all treatments at several of our sites, suggesting that factors beyond those manipulated here also play a key role at many sites. At sites where biotic resistance is important, spatial and temporal variation in community composition and the genetic composition of the invasion pool may explain the invasion success of Medicago into this community

    Data from: Genetic variation in mutualistic and antagonistic interactions in an invasive legume

    No full text
    Mutualists may play an important role in invasion success. The ability to take advantage of novel mutualists or survive and reproduce despite a lack of mutualists may facilitate invasion by those individuals with such traits. Here, we used two greenhouse studies to examine how soil microbial communities in general and mutualistic rhizobia in particular affect the performance of a legume species (Medicago polymorpha) that has invaded five continents. We performed two plant growth experiments with Medicago polymorpha, inoculating them with soil slurries in one experiment or rhizobial cultures in another experiment. For both experiments, we compared the growth of Medicago in competition with conspecific or heterospecific plants and examined variation among plant genotypes collected from the native and introduced ranges. We found that all genotypes experienced similar increases in biomass and formed more nodules that house rhizobia bacteria when inoculated with soil from a previously invaded site, compared to uninoculated plants or plants inoculated with soil from uninvaded and low invasion sites. In a second experiment, plants inoculated with rhizobia generally produced more biomass, had greater tolerance to interspecific competition, and had greater effects on competitor biomass than uninoculated plants. However, plant genotypes collected from the native range benefited more from rhizobia and were less tolerant of competition relative to genotypes collected from the introduced range. In the introduced range, compatible mutualists may not be readily available but competition is intense, causing Medicago to evolve to benefit less from interactions with rhizobia mutualists, while simultaneously becoming more tolerant of competition

    The Risk of Polyspermy in Three Congeneric Sea Urchins and its Implications for Gametic Incompatibility and Reproductive Isolation

    No full text
    Developmental failure caused by excess sperm (polyspermy) is thought to be an important mechanism driving the evolution of gamete-recognition proteins, reproductive isolation, and speciation in marine organisms. However, these theories assume that there is heritable variation in the susceptibility to polyspermy and that this variation is related to the overall affinity between sperm and eggs. These assumptions have not been critically examined. We investigated the relationship between ease of fertilization and susceptibility to polyspermy within and among three congeneric sea urchins. The results from laboratory studies indicate that, both within and among species, individuals and species that produce eggs capable of fertilization at relatively low sperm concentrations are more susceptible to polyspermy, whereas individuals and species producing eggs that require higher concentrations of sperm to be fertilized are more resistant to polyspermy. This relationship sets the stage for selection on gamete traits that depend on sperm availability and for sexual conflict that can influence the evolution of gamete-recognition proteins and eventually lead to reproductive isolation

    Data from: A shift from exploitation to interference competition with increasing density affects population and community dynamics

    No full text
    Intraspecific competition influences population and community dynamics and occurs via two mechanisms. Exploitative competition is an indirect effect that occurs through use of a shared resource and depends on resource availability. Interference competition occurs by obstructing access to a resource and may not depend on resource availability. Our study tested whether the strength of interference competition changes with protozoa population density. We grew experimental microcosms of protozoa and bacteria under different combinations of protozoan density and basal resource availability. We then solved a dynamic predator–prey model for parameters of the functional response using population growth rates measured in our experiment. As population density increased, competition shifted from exploitation to interference, and competition was less dependent on resource levels. Surprisingly, the effect of resources was weakest when competition was the most intense. We found that at low population densities, competition was largely exploitative and resource availability had a large effect on population growth rates, but the effect of resources was much weaker at high densities. This shift in competitive mechanism could have implications for interspecific competition, trophic interactions, community diversity, and natural selection. We also tested whether this shift in the mechanism of competition with protozoa density affected the structure of the bacterial prey community. We found that both resources and protozoa density affected the structure of the bacterial prey community, suggesting that competitive mechanism may also affect trophic interactions

    Data from: Rethinking niche evolution: experiments with natural communities of protozoa in pitcher plants

    No full text
    Classic niche theory predicts that competing species will evolve to use different resources and interact less, whereas recent niche-converge ideas predict that species evolve to use similar resources and interact more. Most data supporting niche evolution are based on observations of contemporary niche use, whereas experimental support is quite sparse. We followed the evolution of four species of Protozoa during succession in the water-filled leaves of the pitcher plant, Sarracenia purpurea, and found that evolution in multispecies systems follows a surprising pattern. Over several hundred generations, weak competitors evolved to be stronger while strong competitors evolved to become weaker, which does not conform to expectations of either niche divergence or convergence. Evolution in this system appears to occur in response to characteristics of a suite of several competitors in the community, rather than pairwise interactions. Ecologists may need to rethink the roles of competition and evolution in structuring communities
    corecore