37 research outputs found

    Pair Distribution Function Analysis and Electrochemical Performance of Mesoporous Carbon Nanomaterials Synthesized Through KOH and ZnCl2 Activation

    Get PDF
    Mesoporous carbon has been synthesized by activating carbonized biogas slurry residues with ZnCl2 and KOH simultaneously. The carbon to activating agent mass ratios were kept at 1:4, while the ZnCl2 to KOH mass ratio varied from 4:0, 3:1, 2:2, 1:3, to 0:4. The highest BET specific surface area of 361 m2 g-1, micropore surface area of 231 m2 g‒1, mesopore surface area of 125 m2 g‒1, and total pore volume of 0.23 cm3 g‒1 which amounted to 78% mesopore content, were obtained for the sample with 3:1 ZnCl2 to KOH mass ratio. Scanning electron microscope (SEM) images were acquired to determine the surface morphology and energy dispersive X-ray (EDX) was used to determine surface composition of the samples. The short, medium, and long-range orders of the synthesized materials were studied using pair distribution function (PDF) analysis. PDF showed that in addition to the locally ordered carbon and silica phase components, samples activated using combined ZnCl2 and KOH also contained crystalline Zn2SiO4 phase with the willemite structure. Electrochemical studies in three-electrode cell system revealed maximum specific capacitance of 216 F g‒1 exhibited by sample with a ZnCl2: KOH mass ratio of 3:1 at a scan rate of 5 mV s‒1. Keywords: Mesoporous carbon; Pair distribution function, Specific capacitance, supercapacitor &nbsp

    Total scattering reveals the hidden stacking disorder in a 2D covalent organic framework

    Get PDF
    Interactions between extended π-systems are often invoked as the main driving force for stacking and crystallization of 2D organic polymers. In covalent organic frameworks (COFs), the stacking strongly influences properties such as the accessibility of functional sites, pore geometry, and surface states, but the exact nature of the interlayer interactions is mostly elusive. The stacking mode is often identified as eclipsed based on observed high symmetry diffraction patterns. However, as pointed out by various studies, the energetics of eclipsed stacking are not favorable and offset stacking is preferred. This work presents lower and higher apparent symmetry modifications of the imine-linked TTI-COF prepared through high- and low-temperature reactions. Through local structure investigation by pair distribution function analysis and simulations of stacking disorder, we observe random local layer offsets in the low temperature modification. We show that while stacking disorder can be easily overlooked due to the apparent crystallographic symmetry of these materials, total scattering methods can help clarify this information and suggest that defective local structures could be much more prevalent in COFs than previously thought. A detailed analysis of the local structure helps to improve the search for and design of highly porous tailor-made materials

    Direct Observation of Dynamic Symmetry Breaking above Room Temperature in Methylammonium Lead Iodide Perovskite

    Full text link
    Lead halide perovskites such as methylammonium lead triiodide (MAPI) have outstanding optical and electronic properties for photovoltaic applications, yet a full understanding of how this solution processable material works so well is currently missing. Previous research has revealed that MAPI possesses multiple forms of static disorder regardless of preparation method, which is surprising in light of its excellent performance. Using high energy resolution inelastic X-ray (HERIX) scattering, we measure phonon dispersions in MAPI and find direct evidence for another form of disorder in single crystals: large amplitude anharmonic zone-edge rotational instabilities of the PbI_6 octahedra that persist to room temperature and above, left over from structural phase transitions that take place tens to hundreds of degrees below. Phonon calculations show that the orientations of the methylammonium couple strongly and cooperatively to these modes. The result is a non-centrosymmetric, instantaneous local structure, which we observe in atomic pair distribution function (PDF) measurements. This local symmetry breaking is unobservable by Bragg diffraction, but can explain key material properties such as the structural phase sequence, ultra low thermal transport, and large minority charge carrier lifetimes despite moderate carrier mobility.Comment: 30 pages, 11 figure

    Light-driven molecular motors embedded in covalent organic frameworks

    Get PDF
    The incorporation of molecular machines into the backbone of porous framework structures will facilitate nano actuation, enhanced molecular transport, and other out-of-equilibrium host-guest phenomena in well-defined 3D solid materials. In this work, we detail the synthesis of a diamine-based light-driven molecular motor and its incorporation into a series of imine-based polymers and covalent organic frameworks (COF). We study structural and dynamic properties of the molecular building blocks and derived self-assembled solids with a series of spectroscopic, diffraction, and theoretical methods. Using an acid-catalyzed synthesis approach, we are able to obtain the first crystalline 2D COF with stacked hexagonal layers that contains 20 mol% molecular motors. The COF features a specific pore volume and surface area of up to 0.45 cm(3) g(-1) and 604 m(2) g(-1), respectively. Given the molecular structure and bulkiness of the diamine motor, we study the supramolecular assembly of the COF layers and detail stacking disorders between adjacent layers. We finally probe the motor dynamics with in situ spectroscopic techniques revealing current limitations in the analysis of these new materials and derive important analysis and design criteria as well as synthetic access to new generations of motorized porous framework materials

    pH-Responsive Relaxometric Behaviour of Coordination Polymer Nanoparticles Made of a Stable Macrocyclic Gadolinium Chelate

    Get PDF
    Lanthanide-containing nanoscale particles have been widely explored for various biomedical purposes, however, they are often prone to metal leaching. Here we have created a new coordination polymer (CP) by applying, for the first time, a stable Gdchelate as building block in order to prevent any fortuitous release of free lanthanide(III) ion. The use of the Gd-DOTA-4AmP complex as a design element in the CP allows not only for enhanced relaxometric properties (maximum r=16.4 mmsat 10 MHz), but also for a pH responsiveness (Δr=108 % between pH 4 and 6.5), beyond the values obtained for the low molecular weight Gd-DOTA-4AmP itself. The CP can be miniaturised to the nanoscale to form colloids that are stable in physiological saline solution and in cell culture media and does not show cytotoxicity

    Guest-responsive thermal expansion in the Zr-porphyrin metal-organic framework PCN-222

    No full text
    We use powder X-ray diffraction under variable temperature to study the thermal expansion of the metal- organic framework PCN-222 with varying amounts of guest content. The thermal expansion increases drastically in magnitude as the guest occupancy is reduced. Upon cooling, the thermal expansion along c changes sign from negative to positive and the volumetric expansivity nearly quadruples in magnitude. This seemingly results from a reorganisation of the guest molecules and so our results highlight the intriguing interplay between framework dynamics and guest occupancy in mesoporous metal-organic frameworks

    Adsorptive Removal of Iodate Oxyanions from Water using a Zr-based Metal–Organic Framework

    No full text
    A Zr6-based metal–organic framework (MOF), MOF-808, is investigated for the adsorptive removal of IO3⁻ from aqueous solutions, due to its high surface area and abundance of open metal sites. The uptake kinetics, adsorption capacity and binding mode are studied, showing a maximum uptake capacity of 233 mg/g, the highest reported by any material

    Structures of Hard Phases in Thermoplastic Polyurethanes

    No full text
    Limited long-range ordering and the presence of both hard and soft segments can cause substantial difficulties for structure determination in urethane elastomers. Here, the structuring has been investigated for a series of thermoplastic polyurethanes composed of 4,4â€Č-methylene diphenyl diisocyanate and 1,4-butanediol. We utilize pair distribution function analysis of X-ray total scattering measurements to directly access the local structure and quantify the degree of ordering, showing that the structure varies significantly over the range of different component ratios investigated. A simple method is demonstrated for evaluating the viability of various structure candidates for the hard segment. The nature of the molecular conformations and packing is verified, allowing both ordered and disordered components to be quantified through structural modeling

    Local Environment of Terbium(III) Ions in Layered Nanocrystalline Zirconium(IV) Phosphonate–Phosphate Ion Exchange Materials

    No full text
    The structures of Zr­(IV) phosphonate-phosphate based, unconventional metal organic framework materials have been determined using atomic pair distribution function analysis of high energy, X-ray total scattering diffraction data. They are found to form as nanocrystalline layers of Zr phosphate, similar to the bulk, but with a high degree of interlayer disorder and intermediate intralayer order extending around 5 nm. These materials are of interest for their high selectivity for 3+ lanthanide ions. To investigate the mechanism of the selectivity, we utilize difference pair distribution function analysis to extract the local structural environment of Tb<sup>3+</sup> ions loaded into the framework. The ions are found to sit between the layers in a manner resembling the local environment of Tb in Scheelite-type terbium phosphate. By mapping this local structure onto that of the refined structure for zirconium-phenyl-phosphonate, we show how dangling oxygens from the phosphate groups, acting like nose hairs, are able to reorient to provide a friendly intercalation environment for the Tb<sup>3+</sup> ions
    corecore