19 research outputs found
The Myb/SANT domain of the telomere-binding protein TRF2 alters chromatin structure
Eukaryotic DNA is packaged into chromatin, which regulates genome activities such as telomere maintenance. This study focuses on the interactions of a myb/SANT DNA-binding domain from the telomere-binding protein, TRF2, with reconstituted telomeric nucleosomal array fibers. Biophysical characteristics of the factor-bound nucleosomal arrays were determined by analytical agarose gel electrophoresis (AAGE) and single molecules were visualized by atomic force microscopy (AFM). The TRF2 DNA-binding domain (TRF2 DBD) neutralized more negative charge on the surface of nucleosomal arrays than histone-free DNA. Binding of TRF2 DBD at lower concentrations increased the radius and conformational flexibility, suggesting a distortion of the fiber structure. Additional loading of TRF2 DBD onto the nucleosomal arrays reduced the flexibility and strongly blocked access of micrococcal nuclease as contour lengths shortened, consistent with formation of a unique, more compact higher-order structure. Mirroring the structural results, TRF2 DBD stimulated a strand invasion-like reaction, associated with telomeric t-loops, at lower concentrations while inhibiting the reaction at higher concentrations. Full-length TRF2 was even more effective at stimulating this reaction. The TRF2 DBD had less effect on histone-free DNA structure and did not stimulate the t-loop reaction with this substrate, highlighting the influence of chromatin structure on the activities of DNA-binding proteins
The effect of the TRF2 N-terminal and TRFH regions on telomeric G-quadruplex structures
The sequence of human telomeric DNA consists of tandem repeats of 5′-d(TTAGGG)-3′. This guanine-rich DNA can form G-quadruplex secondary structures which may affect telomere maintenance. A current model for telomere protection by the telomere-binding protein, TRF2, involves the formation of a t-loop which is stabilized by a strand invasion-like reaction. This type of reaction may be affected by G-quadruplex structures. We analyzed the influence of the arginine-rich, TRF2 N-terminus (TRF2B), as well as this region plus the TRFH domain of TRF2 (TRF2BH), on the structure of G-quadruplexes. Circular dichroism results suggest that oligonucleotides with 4, 7 and 8 5′-d(TTAGGG)-3′ repeats form hybrid structures, a mix of parallel/antiparallel strand orientation, in K+. TRF2B stimulated the formation of parallel-stranded structures and, in some cases, intermolecular structures. TRF2BH also stimulated intermolecular but not parallel-stranded structures. Only full-length TRF2 and TRF2BH stimulated uptake of a telomeric single-stranded oligonucleotide into a plasmid containing telomeric DNA in the presence of K+. The results in this study suggest that G-quadruplex formation inhibits oligonucleotide uptake into the plasmid, but the inhibition can be overcome by TRF2. This study is the first analysis of the effects of TRF2 domains on G-quadruplex structures and has implications for the role of G-quadruplexes and TRF2 in the formation of t-loops
The Telomere Binding Protein TRF2 Induces Chromatin Compaction
Mammalian telomeres are specialized chromatin structures that require the telomere binding protein, TRF2, for maintaining chromosome stability. In addition to its ability to modulate DNA repair activities, TRF2 also has direct effects on DNA structure and topology. Given that mammalian telomeric chromatin includes nucleosomes, we investigated the effect of this protein on chromatin structure. TRF2 bound to reconstituted telomeric nucleosomal fibers through both its basic N-terminus and its C-terminal DNA binding domain. Analytical agarose gel electrophoresis (AAGE) studies showed that TRF2 promoted the folding of nucleosomal arrays into more compact structures by neutralizing negative surface charge. A construct containing the N-terminal and TRFH domains together altered the charge and radius of nucleosomal arrays similarly to full-length TRF2 suggesting that TRF2-driven changes in global chromatin structure were largely due to these regions. However, the most compact chromatin structures were induced by the isolated basic N-terminal region, as judged by both AAGE and atomic force microscopy. Although the N-terminal region condensed nucleosomal array fibers, the TRFH domain, known to alter DNA topology, was required for stimulation of a strand invasion-like reaction with nucleosomal arrays. Optimal strand invasion also required the C-terminal DNA binding domain. Furthermore, the reaction was not stimulated on linear histone-free DNA. Our data suggest that nucleosomal chromatin has the ability to facilitate this activity of TRF2 which is thought to be involved in stabilizing looped telomere structures
Formation of higher-order secondary and tertiary chromatin structures by genomic mouse mammary tumor virus promoters
Agarose multigel electrophoresis has been used to characterize the structural features of isolated genomic mouse mammary tumor virus (MMTV) promoters. The mouse 3134cells used for these studies contain ∼200 stably integrated tandem repeats of a 2.4-kb MMTV promoter fragment. Inactive, basally active, and hormonally activated genomic promoters were liberated by restriction digestion of isolated nuclei, recovered in low-salt nuclear extracts, and electrophoresed in multigels consisting of nine individual agarose running gels. Specific bands were detected and characterized by Southern and Western blotting. We find that transcriptionally inactive promoters contain TBP and high levels of histone H1, and are present to varying extents in both untreated and dexamethasone (DEX)-treated 3134cells. In contrast, the basally active promoter, present in untreated cells, is bound to RNA Pol II, TBP, and Oct1, contains acetylated H3 tail domains, and is depleted of histone H1. The DEX-activated promoter possessed similar composition as the basal promoter, but also contains stably bound Brg1. Strikingly, all forms of the MMTV promoter condense into higher-order secondary and/or tertiary chromatin structures in vitro in the presence of Mg(2+). Thus, genomic MMTV promoter chromatin retains the ability to form classical higher-order structures under physiological salt conditions, even after dissociation of H1 and binding of several transcription factors and multiprotein complexes. These results suggest that transcriptionally active eukaryotic promoters may function in a locally folded chromatin environment in vivo
ATP-Dependent Mobilization of the Glucocorticoid Receptor during Chromatin Remodeling
Chromatin remodeling by the glucocorticoid receptor (GR) is associated with activation of transcription at the mouse mammary tumor virus (MMTV) promoter. We reconstituted this nucleoprotein transition with chromatin assembled on MMTV DNA. The remodeling event was ATP dependent and required either a nuclear extract from HeLa cells or purified human Swi/Snf. Through the use of a direct interaction assay (magnetic bead pull-down), we demonstrated recruitment of human Swi/Snf to MMTV chromatin by GR. Unexpectedly, we found that GR is actively displaced from the chromatin template during the remodeling process. ATP-dependent GR displacement was reversed by the addition of apyrase and was specific to chromatin templates. The disengagement reaction could also be induced with purified human Swi/Snf. Although GR apparently dissociated during chromatin remodeling by Swi/Snf, it participated in binding of the secondary transcription factor, nuclear factor 1. These results are paralleled by a recent discovery that the hormone-occupied receptor undergoes rapid exchange between chromatin and the nucleoplasmic compartment in living cells. Both the in vitro and in vivo results are consistent with a dynamic model (hit and run) in which GR first binds to chromatin after ligand activation, recruits a remodeling activity, facilitates transcription factor binding, and is simultaneously lost from the template
Recommended from our members
Methods and compositions for modulation and inhibition of telomerase in vitro
It was found that normal human stem cells produce a regulated non-processive telomerase activity, while cancer cells produce a processive telomerase activity. Nucleotide analogs, such as 7-deaza-2'-deoxyquanosine-5'-triphosphate (7-deaza-dGTP) were found to be substrates for processive telomerase and incorporated into telomeric sequence. The incorporation of this nucleotide subsequently affected the processivity of telomerase, converting processive telomerase to non-processive telomerase. The incorporation of this nucleotide analogs was also found to inhibit formation of G-quartets by telomeric sequence. Other methods for converting cancer processive telomerase to the more benign non-processive telomerase include partially cleaving the telomerase RNA. The nucleoside analogs were found to be capable of a variety of activities including mediating allosteric-like inhibition of telomerase, premature termination and shortening of telomeric DNA, destabilization of telomeric structure and function and eventually cell death. Understanding the mechanisms of telomerase modulation by the 7-deaza-nucleotides has allowed the design of new telomerase inhibitors, modulators and agents for affecting telomere structure and function. These discoveries have application in the treatment of cancer.Board of Regents, University of Texas Syste