152 research outputs found

    Host-Derived Smooth Muscle Cells Accumulate in Cardiac Allografts: Role of Inflammation and Monocyte Chemoattractant Protein 1

    Get PDF
    Transplant arteriosclerosis is characterized by inflammation and intimal thickening caused by accumulation of smooth muscle cells (SMCs) both from donor and recipient. We assessed the relationship between clinical factors and the presence of host-derived SMCs in 124 myocardial biopsies from 26 consecutive patients who received hearts from opposite-sex donors. Clinical and demographic information was obtained from the patients' medical records. Host-derived SMCs accounted for 3.35Β±2.3% of cells in arterioles (range, 0.08–12.51%). As shown by linear regression analysis, an increased number of SMCs was associated with rejection grade (mean, 1.41Β±1.03, pβ€Š=β€Š0.034) and the number of leukocytes (19.1Β±12.7 per 20 high-power fields, pβ€Š=β€Š0.01). The accumulation of host-derived SMCs was associated with an increased number of leukocytes in the allografts. In vitro, monocyte chemoattractant protein 1 (MCP-1) released from leukocytes was crucial for SMC migration. After heart allotransplantion, mice treated with MCP-1-specific antibodies had significantly fewer host-derived SMCs in the grafts than mice treated with isotypic antibody controls. We conclude that the number of host-derived SMCs in human cardiac allografts is associated with the rejection grade and that MCP-1 may play pivotal role in recruiting host-derived SMCs into cardiac allografts

    Brain Potentials Highlight Stronger Implicit Food Memory for Taste than Health and Context Associations

    Get PDF
    Increasingly consumption of healthy foods is advised to improve population health. Reasons people give for choosing one food over another suggest that non-sensory features like health aspects are appreciated as of lower importance than taste. However, many food choices are made in the absence of the actual perception of a food's sensory properties, and therefore highly rely on previous experiences of similar consumptions stored in memory. In this study we assessed the differential strength of food associations implicitly stored in memory, using an associative priming paradigm. Participants (N = 30) were exposed to a forced-choice picture-categorization task, in which the food or non-food target images were primed with either non-sensory or sensory related words. We observed a smaller N400 amplitude at the parietal electrodes when categorizing food as compared to non-food images. While this effect was enhanced by the presentation of a food-related word prime during food trials, the primes had no effect in the non-food trials. More specifically, we found that sensory associations are stronger implicitly represented in memory as compared to non-sensory associations. Thus, this study highlights the neuronal mechanisms underlying previous observations that sensory associations are important features of food memory, and therefore a primary motive in food choice.</p

    Chemokines and their role in airway hyper-reactivity

    Get PDF
    Airway hyper-reactivity is a characteristic feature of many inflammatory lung diseases and is defined as an exaggerated degree of airway narrowing. Chemokines and their receptors are involved in several pathological processes that are believed to contribute to airway hyper-responsiveness, including recruitment and activation of inflammatory cells, collagen deposition and airway wall remodeling. These proteins are therefore thought to represent important therapeutic targets in the treatment of airway hyper-responsiveness. This review highlights the processes thought to be involved in airway hyper-responsiveness in allergic asthma, and the role of chemokines in these processes. Overall, the application of chemokines to the prevention or treatment of airway hyper-reactivity has tremendous potential

    A workshop on β€˜Dietary Sweetnessβ€”Is It an Issue?’

    Get PDF
    This report summarises a workshop convened by ILSI Europe on 3 and 4 April 2017 to discuss the issue of dietary sweetness. The objectives were to understand the roles of sweetness in the diet, establish whether exposure to sweetness affects diet quality and energy intake, and consider whether sweetness per se affects health. Although there may be evidence for tracking of intake of some sweet components of the diet through childhood, evidence for tracking of whole diet sweetness, or through other stages of maturity are lacking. The evidence to date does not support adverse effects of sweetness on diet quality or energy intake, except where sweet food choices increase intake of free sugars. There is some evidence for improvements in diet quality and reduced energy intake where sweetness without calories replaces sweetness with calories. There is a need to understand the physiological and metabolic relevance of sweet taste receptors on the tongue, in the gut and elsewhere in the body, as well as possible differentiation in the effects of sustained consumption of individual sweeteners. Despite a plethora of studies, there is no consistent evidence for an association of sweetness sensitivity/preference with obesity or type 2 diabetes. A multifaceted integrated approach, characterising nutritive and sensory aspects of the whole diet or dietary patterns, may be more valuable in providing contextual insight. The outcomes of the workshop could be used as a scientific basis to inform the expert community and create more useful dialogue among health care professionals

    Rapid Reversal of Chondroitin Sulfate Proteoglycan Associated Staining in Subcompartments of Mouse Neostriatum during the Emergence of Behaviour

    Get PDF
    BACKGROUND: The neostriatum, the mouse homologue of the primate caudate/putamen, is the input nucleus for the basal ganglia, receiving both cortical and dopaminergic input to each of its sub-compartments, the striosomes and matrix. The coordinated activation of corticostriatal pathways is considered vital for motor and cognitive abilities, yet the mechanisms which underlie the generation of these circuits are unknown. The early and specific targeting of striatal subcompartments by both corticostriatal and nigrostriatal terminals suggests activity-independent mechanisms, such as axon guidance cues, may play a role in this process. Candidates include the chondroitin sulfate proteoglycan (CSPG) family of glycoproteins which have roles not only in axon guidance, but also in the maturation and stability of neural circuits where they are expressed in lattice-like perineuronal nets (PNNs). METHODOLOGY/PRINCIPAL FINDINGS: The expression of CSPG-associated structures and PNNs with respect to neostriatal subcompartments has been examined qualitatively and quantitatively using double-labelling for Wisteria floribunda agglutinin (WFA), and the mu-opioid receptor (muOR), a marker for striosomes, at six postnatal ages in mice. We find that at the earliest ages (postnatal day (P)4 and P10), WFA-positive clusters overlap preferentially with the striosome compartment. By P14, these clusters disappear. In contrast, PNNs were first seen at P10 and continued to increase in density and spread throughout the caudate/putamen with maturation. Remarkably, the PNNs overlap almost exclusively with the neostriatal matrix. CONCLUSIONS/SIGNIFICANCE: This is the first description of a reversal in the distribution of CSPG associated structures, as well as the emergence and maintenance of PNNs in specific subcompartments of the neostriatum. These results suggest diverse roles for CSPGs in the formation of functional corticostriatal and nigrostriatal connectivity within the striosome and matrix compartments of the developing caudate/putamen

    GASKAP-HI pilot survey science I: ASKAP zoom observations of Hi emission in the Small Magellanic Cloud

    Get PDF
    We present the most sensitive and detailed view of the neutral hydrogen (HI) emission associated with the Small Magellanic Cloud (SMC), through the combination of data from the Australian Square Kilometre Array Pathfinder (ASKAP) and Parkes (Murriyang), as part of the Galactic Australian Square Kilometre Array Pathfinder (GASKAP) pilot survey. These GASKAP-HI pilot observations, for the first time, reveal HI in the SMC on similar physical scales as other important tracers of the interstellar medium, such as molecular gas and dust. The resultant image cube possesses an rms noise level of 1.1K (1.6 mJy beam(-1)) per 0.98 km s(-1) spectral channel with an angular resolution of 30" (similar to 10 pc). We discuss the calibration scheme and the custom imaging pipeline that utilises a joint deconvolution approach, efficiently distributed across a computing cluster, to accurately recover the emission extending across the entire similar to 25 deg(2) field-of-view. We provide an overview of the data products and characterise several aspects including the noise properties as a function of angular resolution and the represented spatial scales by deriving the global transfer function over the full spectral range. A preliminary spatial power spectrum analysis on individual spectral channels reveals that the power law nature of the density distribution extends down to scales of 10 pc. We highlight the scientific potential of these data by comparing the properties of an outflowing high-velocity cloud with previous ASKAP+Parkes HI test observations
    • …
    corecore