54 research outputs found

    Euclid preparation: XVIII. The NISP photometric system

    Get PDF
    Galaxie

    Balancing the energy budget between star formation and active galactic nuclei in high-redshift infrared luminous galaxies

    Get PDF
    We present deep Spitzer mid-infrared spectroscopy, along with 16, 24, 70, and 850 μm photometry, for 22 galaxies located in the Great Observatories Origins Deep Survey-North (GOODS-N) field. The sample spans a redshift range of 0.6 lsim z lsim 2.6, 24 μm flux densities between ~0.2 and 1.2 mJy, and consists of submillimeter galaxies (SMGs), X-ray or optically selected active galactic nuclei (AGNs), and optically faint (zAB > 25 mag) sources. We find that infrared (IR; 8-1000 μm) luminosities derived by fitting local spectral energy distributions (SEDs) with 24 μm photometry alone are well matched to those when additional mid-infrared spectroscopic and longer wavelength photometric data are used for galaxies having z lsim 1.4 and 24 μm-derived IR luminosities typically lsim3 × 1012 L sun. However, for galaxies in the redshift range between 1.4 lsim z lsim 2.6, typically having 24-μm-derived IR luminosities gsim3 × 1012 L sun, IR luminosities are overestimated by an average factor of ~5 when SED fitting with 24 μm photometry alone. This result arises partly due to the fact that high-redshift galaxies exhibit aromatic feature equivalent widths that are large compared to local galaxies of similar luminosities. Using improved estimates for the IR luminosities of these sources, we investigate whether their infrared emission is found to be in excess relative to that expected based on extinction-corrected UV star formation rates (SFRs), possibly suggesting the presence of an obscured AGN. Through a spectral decomposition of mid-infrared spectroscopic data, we are able to isolate the fraction of IR luminosity arising from an AGN as opposed to star formation activity. This fraction is only able to account for ~30% of the total IR luminosity among the entire sample and ~35% of the "excess" IR emission among these sources, on average, suggesting that AGNs are not the dominant cause of the inferred "mid-infrared excesses" in these systems. Of the sources identified as having mid-infrared excesses, half are accounted for by using proper bolometric corrections while half show the presence of obscured AGNs. This implies sky and space densities for Compton-thick AGNs of ~1600 deg-2 and ~1.3 × 10-4 Mpc-3, respectively. We also note that IR luminosities derived from SED fitting the mid-infrared and 70 μm broadband photometry agree within ~50% to those values estimated using the additional mid-infrared spectroscopic and submillimeter data. An inspection of the far-infrared (FIR)-radio correlation shows no evidence for evolution over this redshift range. However, we find that the SMGs have IR/radio ratios which are a factor of ~3 lower, on average, than what is measured for star-forming galaxies in the local universe

    Detection of Far-Infrared and Polycyclic Aromatic Hydrocarbon Emission from the Cosmic Eye: Probing the Dust and Star Formation of Lyman Break Galaxies

    Get PDF
    We report the results of a Spitzer infrared (IR) study of the Cosmic Eye, a strongly lensed, L*UV Lyman break galaxy (LBG) at z = 3.074. We obtained Spitzer mid-IR spectroscopy as well as MIPS 24 and 70 μm photometry. The Eye is detected with high significance at both 24 and 70 μm and, when including a flux limit at 3.5 mm, we estimate an IR luminosity of L IR = 8.3+4.7 –4.4 × 1011 L ☉ assuming a magnification of 28± 3. This L IR is eight times lower than that predicted from the rest-frame ultraviolet properties assuming a Calzetti reddening law. This has also been observed in other young LBGs, and indicates that the dust reddening law may be steeper in these galaxies. The mid-IR spectrum shows strong polycyclic aromatic hydrocarbon (PAH) emission at 6.2 and 7.7 μm, with equivalent widths near the maximum values observed in star-forming galaxies at any redshift. The L PAH-to-L IR ratio lies close to the relation measured in local starbursts. Therefore, L PAH or L MIR may be used to estimate L IR, and thus star formation rate, of LBGs, whose fluxes at longer wavelengths are typically below current confusion limits. We also report the highest redshift detection of the 3.3 μm PAH emission feature. The PAH ratio, L 6.2/L 3.3 = 5.1 ± 2.7, and the PAH-to-LIR ratio, L 3.3/L IR = 8.5 ± 4.7 × 10–4, are both in agreement with measurements in local starbursts and ultraluminous infrared galaxies (ULIRGs), suggesting that this line may serve as a good proxy for L PAH or L IR at z > 3 with the James Webb Space Telescope

    LOCAL STARBURSTS: PERSPECTIVES FROM THE OPTICAL

    No full text
    Keywords: The optical regime is historically the best-studied wavelength range. Gas ionized by massive stars produces optical emission lines that have been used to derive indicators of star–formation rate, metallicity, dust reddening, and the ionization conditions of the interstellar medium. Absorptions lines have been used to measure velocity dispersions, and the 4000 A break has been shown to be a useful indicator of the mean age of stellar populations. I briefly summarize some recent work done on, specifically, star formation rate indicators, in view of their importance for understanding star–forming galaxies at high redshift. 1
    • …
    corecore