27 research outputs found

    Efecto del tiempo de refrigeración en la oxidación de lípidos y perfil de ácidos grasos del pez gato (Arius maculatus) comercializado en el Camerún

    Get PDF
    The effects of refrigeration at 4 °C during 9 days on the quality and stability of catfish oil were evaluated using a change in fatty acid composition by gas chromatography (GC), commonly used analytical indexes (acid and peroxide values), and analysis by Fourier transform infrared (FTIR) spectroscopy. The results revealed that lipid deterioration, hydrolysis and oxidation occurred throughout the cold storage (4 °C). Refrigeration induced the lipolysis of triglycerides by lipases and phospholipases. It also affected the fatty acids composition of the catfish. The progressive loss of unsaturation was monitored by the decrease in the absorbance band at 3012 cm-1 on FTIR spectra and the lowest value was observed in the catfish muscle at 9 days of refrigeration. Eicosapentaenoic C20:5ω3 (EPA) and docosahexaenoic C22:6ω3 (DHA) acids were the polyunsaturated fatty acids most affected during refrigeration. Refrigeration for less than 5 days was found to be the best conditions for the preservation of the catfish.El efecto de la refrigeración a 4 °C durante 9 días sobre la calidad y estabilidad del aceite de pez gato se evaluó mediante el cambio en la composición de ácidos grasos por cromatografía de gases (CG), los índices analíticos comúnmente utilizados (acidez y peróxidos) así como mediante análisis por espectroscopia de infrarrojo por transformada de Fourier (FTIR). Los resultados mostraron que el deterioro de los lípidos, la hidrólisis y la oxidación ocurrieron durante el almacenamiento en frío (4 °C). La refrigeración indujo a lipolisis de triglicéridos por lipasas y fosfolipasas. También se vio afectada la composición de ácidos grasos, la pérdida progresiva de insaturación se controló mediante la disminución de la banda de absorbancia a 301cm-1 en los espectros FTIR y el valor más bajo se observó en el músculo a los 9 días de refrigeración. Los ácidos eicosapentaenoico C20:5ω3 (EPA) y docosahexaenoico C22:6ω3 (DHA) fueron los ácidos grasos poliinsaturados más afectados durante la refrigeración. Se encontró que la refrigeración durante menos de 5 días era la mejor condición para la conservación del pez gato

    Effect of refrigeration time on the lipid oxidation and fatty acid profiles of catfish (<em>Arius maculatus</em>) commercialized in Cameroon

    Get PDF
    The effects of refrigeration at 4 °C during 9 days on the quality and stability of catfish oil were evaluated using a change in fatty acid composition by gas chromatography (GC), commonly used analytical indexes (acid and peroxide values), and analysis by Fourier transform infrared (FTIR) spectroscopy. The results revealed that lipid deterioration, hydrolysis and oxidation occurred throughout the cold storage (4 °C). Refrigeration induced the lipolysis of triglycerides by lipases and phospholipases. It also affected the fatty acids composition of the catfish. The progressive loss of unsaturation was monitored by the decrease in the absorbance band at 3012 cm-1 on FTIR spectra and the lowest value was observed in the catfish muscle at 9 days of refrigeration. Eicosapentaenoic C20:5ω3 (EPA) and docosahexaenoic C22:6ω3 (DHA) acids were the polyunsaturated fatty acids most affected during refrigeration. Refrigeration for less than 5 days was found to be the best conditions for the preservation of the catfish

    The proximate composition of three marine pelagic fish: blue whiting (Micromesistius poutassou), boarfish (Capros aper) and Atlantic herring (Clupea harengus)

    Get PDF
    peer reviewedThis study presents data from an in-depth proximate compositional analysis of three marine fish species: blue whiting (Micromesistius poutassou), boarfish (Capros aper) and Atlantic herring (Clupea harengus). These fish contained significant amounts of protein (16–17%), lipids (4–11%) and minerals (2–6% ash). The proteins, particularly from boarfish, had close to optimum amino acid profiles for human and fish nutrition. They compared favourably with other fish species in terms of total lipids and relative concentration of the omega-3 fatty acids docosahexaenoic acid and eicosapentaenoic acid (11.8–13.3% and 5.9–8.1% in triacylglycerols [TG] and 24.6–35.4% and 5.8–12.0% in phospholipids [PL]). Atlantic herring had the highest lipid content among the three fish and was found to contain high levels of PL poly-unsaturated fatty acids, including omega-3 fatty acids. Minerals detected in the fish included calcium (272–1,520 mg/100 g), phosphorus (363–789 mg/100 g), iron (1.07–2.83 mg/100 g), magnesium (40.70–62.10 mg/100 g), potassium (112.00–267.00 mg/100 g), selenium (0.04–0.06 mg/100 g), sodium (218.00–282.00 mg/100 g) and zinc (1.29–5.57 mg/100 g). Boarfish had the highest ash fraction and also the highest levels of all the minerals, except potassium. Atlantic herring had considerably lower mineral content compared with the other two species and, levels detected were also lower than those reported in previously published studies. Heavy metals contents were quantified, and levels were significantly below the maximum allowable limits for all elements except arsenic, which ranged from 1.34 to 2.44 mg/kg in the three fish species. Data outlined here will be useful for guiding product development. Future studies would benefit from considering catch season, sex and developmental stage of the fish

    Effect of refrigeration time on the lipid oxidation and fatty acid profiles of catfish (Arius maculatus) commercialized in Cameroon

    No full text
    The effects of refrigeration at 4 °C during 9 days on the quality and stability of catfish oil were evaluated using a change in fatty acid composition by gas chromatography (GC), commonly used analytical indexes (acid and peroxide values), and analysis by Fourier transform infrared (FTIR) spectroscopy. The results revealed that lipid deterioration, hydrolysis and oxidation occurred throughout the cold storage (4 °C). Refrigeration induced the lipolysis of triglycerides by lipases and phospholipases. It also affected the fatty acids composition of the catfish. The progressive loss of unsaturation was monitored by the decrease in the absorbance band at 3012 cm−1on FTIR spectra and the lowest value was observed in the catfish muscle at 9 days of refrigeration. Eicosapentaenoic C20:5ω3 (EPA) and docosahexaenoic C22:6ω3 (DHA) acids were the polyunsaturated fatty acids most affected during refrigeration. Refrigeration for less than 5 days was found to be the best conditions for the preservation of the catfish.Efecto del tiempo de refrigeración en la oxidación de lípidos y perfil de ácidos grasos del pez gato (Arius maculatus) comercializado en el Camerún. El efecto de la refrigeración a 4 °C durante 9 días sobre la calidad y estabilidad del aceite de pez gato se evaluó mediante el cambio en la composición de ácidos grasos por cromatografía de gases (CG), los índices analíticos comúnmente utilizados (acidez y peróxidos) así como mediante análisis por espectroscopia de infrarrojo por transformada de Fourier (FTIR). Los resultados mostraron que el deterioro de los lípidos, la hidrólisis y la oxidación ocurrieron durante el almacenamiento en frío (4 °C). La refrigeración indujo a lipolisis de triglicéridos por lipasas y fosfolipasas. También se vio afectada la composición de ácidos grasos, la pérdida progresiva de insaturación se controló mediante la disminución de la banda de absorbancia a 301cm−1 en los espectros FTIR y el valor más bajo se observó en el músculo a los 9 días de refrigeración. Los ácidos eicosapentaenoico C20:5ω3 (EPA) y docosahexaenoico C22:6ω3 (DHA) fueron los ácidos grasos poliinsaturados más afectados durante la refrigeración. Se encontró que la refrigeración durante menos de 5 días era la mejor condición para la conservación del pez gato

    Alteration of the lipid of red carp (Cyprinus carpio) during frozen storage

    No full text
    The aim of this study was to determine the oxidative stability of oil extracted from red carp fish frozen up to 9 months at −18°C. To assess oil stability of red carp fish, the analytical indexes and Fourier transform infrared (FTIR) spectroscopy were used. These methodologies used provided similar conclusions. Before frozen storage, the composition of fatty acids showed that red carp oil is a good source of polyunsaturated fatty acids (PUFAs) such as linoleic acid (C18:2ω‐6: 5.29% of total fatty acid), linolenic acid (C18:3ω3: 3.53% of total fatty acid), arachidonic acid (C20:4ω6: 3.68% of total fatty acid), eicosapentaenoic acid (C20:5ω‐3, EPA: 4,06% of total fatty acid), and docosahexaenoic acid (C22:6ω‐3: 3.02% of total fatty acid). During frozen storage, the free fatty acid and peroxide value increased, respectively, from 1.35% to 8.06% in oleic acid and 3.77 to 18.62 meq O2/kg in lipid, while the ratio of PUFA/SFA and polyene index decreased, respectively, from 0.58 to 0.25 and 0.30 to 0.09. The triglycerides also decreased with frozen duration. Therefore, for good fish quality, red carp fish must be stored for &lt;3 months at −18°C

    Effect of some local plant extracts on fatty acid composition of fish (Alestes baremoze) during smoking and sun drying in the Far‐North region of Cameroon

    No full text
    Abstract The objective of this study was to assess the antioxidant activities of three plant extracts (Moringa oleifera leaves, Xylopia aethiopica fruits, and Allium cepa leaves) and to evaluate their effects on the preservation of fish polyunsaturated fatty acids (PUFAs) during smoking and sun‐drying processes. PUFAs are highly prone to oxidation during fish processing. The plant extracts were analyzed for their polyphenol contents and were evaluated for their total antiradical capacity. The polyphenol components of each plant were characterized. The hydroethanolic and aqueous extracts were added to the fish at concentrations of 3, 6, 9, and 12 g/L and 10, 20, 30, and 40 g/L, respectively. Butylated hydroxytoluene (BHT) was used as a positive control at a concentration of 2 g/L to compare the antioxidant effects of the plant extracts. The treated fish was subjected to smoking or sun drying and the fatty acid composition of the fish lipid extract was assessed. The results showed that the total polyphenolic, flavonoid, and tannin contents varied significantly from one plant extract to the other (p < .05). The radical scavenging and FRAP increased significantly with the concentration of the plant extracts (p < .05). An HPLC analysis of the extracts led to the preliminary identification of four hydroxycinnamic acids in M. oleifera and X. aethiopica, one anthocyanin and one flavone glycoside in M. oleifera, and four flavan‐3‐ols in X. aethiopica. Moreover, eight flavonols were preliminarily identified in the three plants. Compared to the control product, these plant extracts significantly protected fish PUFAs from oxidation (p < .05). The aqueous extract of A. cepa at 40 g/L better preserved omega‐3 in fish during smoking and sun drying than the control product. Incorporating the three plant extracts during smoking and sun‐drying processes can effectively preserve the PUFAs in fish. Therefore, these plants are viable sources of natural antioxidants in the preservation of fish products
    corecore