1,280 research outputs found

    CNT-based RFID passive gas sensor

    Get PDF

    Prognostic importance of emerging cardiac, inflammatory, and renal biomarkers in chronic heart failure patients with reduced ejection fraction and anaemia: RED-HF study

    Get PDF
    Aims: To test the prognostic value of emerging biomarkers in the Reduction of Events by Darbepoetin Alfa in Heart Failure (RED-HF) trial. Methods and results: Circulating cardiac [N-terminal pro-B-type natriuretic peptide (NT-proBNP), and high-sensitivity troponin T (hsTnT)], neurohumoral [mid-regional pro-adrenomedullin (MR-proADM) and copeptin], renal (cystatin C), and inflammatory [high-sensitivity C-reactive protein (hsCRP)] biomarkers were measured at randomization in 1853 participants with complete data. The relationship between these biomarkers and the primary composite endpoint of heart failure hospitalization or cardiovascular death over 28 months of follow-up (n = 834) was evaluated using Cox proportional hazards regression, the c-statistic and the net reclassification index (NRI). After adjustment, the hazard ratio (HR) for the composite outcome in the top tertile of the distribution compared to the lowest tertile for each biomarker was: NT-proBNP 3.96 (95% CI 3.16–4.98), hsTnT 3.09 (95% CI 2.47–3.88), MR-proADM 2.28 (95% CI 1.83–2.84), copeptin 1.66 (95% CI 1.35–2.04), cystatin C 1.92 (95% CI 1.55–2.37), and hsCRP 1.51 (95% CI 1.27–1.80). A basic clinical prediction model was improved on addition of each biomarker individually, most strongly by NT-proBNP (NRI +62.3%, P < 0.001), but thereafter was only improved marginally by addition of hsTnT (NRI +33.1%, P = 0.004). Further addition of biomarkers did not improve discrimination further. Findings were similar for all-cause mortality. Conclusion: Once NT-proBNP is included, only hsTnT moderately further improved risk stratification in this group of chronic heart failure with reduced ejection fraction patients with moderate anaemia. NT-proBNP and hsTnT far outperform other emerging biomarkers in prediction of adverse outcome

    Multilayer electronic component systems and methods of manufacture

    Get PDF
    Multilayer electronic component systems and methods of manufacture are provided. In this regard, an exemplary system comprises a first layer of liquid crystal polymer (LCP), first electronic components supported by the first layer, and a second layer of LCP. The first layer is attached to the second layer by thermal bonds. Additionally, at least a portion of the first electronic components are located between the first layer and the second layer

    Characteristics of a Linearly Tapered Slot Antenna (LTSA) Conformed Longitudinally Around a Cylinder

    Get PDF
    The family of tapered slot antennas (TSA s) is suitable for numerous applications. Their ease of fabrication, wide bandwidth, and high gain make them desirable for military and commercial systems. Fabrication on thin, flexible substrates allows the TSA to be conformed over a given body, such as an aircraft wing or a piece of clothing for wearable networks. Previously, a Double Exponentially Tapered Slot Antenna (DETSA) was conformed around an exponential curvature, which showed that the main beam skewed towards the direction of curvature. This paper presents a Linearly Tapered Slot Antenna (LTSA) conformed longitudinally around a cylinder. Measured and simulated radiation patterns and the direction of maximum H co-polarization (Hco) as a function of the cylinder radius are presented

    Surface Modification of Polyimide Films for Inkjet-Printing of Flexible Electronic Devices

    Get PDF
    Kapton polyimide films are one of the most commonly used flexible and robust substrates for flexible electronic devices due to their excellent thermal, chemical, mechanical, and electrical properties. However, such films feature an inert and highly hydrophobic surface that inhibits the deposition of functional materials with water-based fluids (solutions, suspensions, inkjet inks, etc.), which raise the need for their surface modification to reduce their inherent surface inertness and/or hydrophobicity in order to allow for the fabrication of electronic devices on the substrates. Traditional Kapton surface modification approaches use harsh conditions that not only cause environmental and safety problems but also compromise the structural integrity and the properties of the substrates. This chapter focuses on two recently-developed mild and environmentally friendly wet chemical approaches for surface modification of Kapton HN films. Unlike the traditional methods that target the polyimide matrix of Kapton films, these two methods target the slip additive embedded in the polyimide matrix. The surface modified Kapton films resulted from these two methods allowed for not only great printability of both water- and organic solvent-based inks (thus facilitating the full-inkjet-printing of entire flexible electronic devices) but also strong adhesion between the inkjet-printed traces and the substrate films

    Guest Editorial Special Issue on Radio-Frequency Identification (RFID), Sensing, and Imaging

    Get PDF

    Octave and Decade UWB Rectifiers Based on Non-Uniform Transmission Lines for Energy Harvesting

    Get PDF
    Ambient RF energy harvesting is a potential energy source for low-power and battery-less wireless sensors, enabling a range of applications from monitoring to security as part of the Internet-of-Things (IoT) scenario. One of the main challenges of ambient RF energy harvesting is the requirement of operation over a multitude of frequency bands of low ambient power densities resulting in a very wide aggregate operating bandwidth. In this paper, design examples of novel ultra-wideband energy harvesters are demonstrated with octave and decade bandwidths in the UHF and low microwave spectrum. The RF-dc conversion efficiency is maximized by tailoring the dimensions of a nonuniform transmission line used to provide broadband impedance matching. The design challenges in terms of impedance matching based on the Bode-Fano theoretical limit, losses and miniaturization are highlighted. Two prototypes are presented and their performance is evaluated. The octave band rectifier showed a measured RF-dc conversion efficiency of more than 60% over a frequency band of 470 to 860 MHz at 10-dBm input power. The decade band rectifier fabricated on Kapton substrate using inkjet printing featured a higher than 33% efficiency over a frequency band from 250 MHz to 3 GHz at 10-dBm input power
    corecore