91 research outputs found

    Quantitative measurement and modeling of the DNA damage signaling network : DNA double-strand breaks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biological Engineering, 2009."September 2009." Cataloged from PDF version of thesis.Includes bibliographical references (p. 218-229).DNA double-strand breaks (DSB) are one of the major mediators of chemotherapy-induced cytotoxicity in tumors. Cells that experience DNA damage can initiate a DNA damage-mediated cell-cycle arrest, attempt to repair the damage and, if successful, resume the cell-cycle (arrest/repair/resume). Cells can also initiate an active cell-death program known as apoptosis. However, it is not known what "formula" a cell uses to integrate protein signaling molecule activities to determine which of these paths it will take, or what protein signaling-molecules are essential to the execution of that decision. A better understanding of how these cellular decisions are made and mediated on a molecular level is essential to the improvement of existing combination and targeted chemotherapies, and to the development of novel targeted and personalized therapies. Our goal has been to gain an understanding of how cells responding to DSB integrate protein signaling-molecule activities across distinct signaling networks to make and execute binary cell-fate decisions, under conditions relevant to tumor physiology and treatment. We created a quantitative signal-response dataset, measuring signals that widely sample the response of signaling networks activated by the induction of DSB, and the associated cellular phenotypic responses, that together reflect the dynamic cellular responses that follow the induction of DSB. We made use of mathematical modeling approaches to systematically discover signal-response relationships within the DSB-responsive protein signaling network. The structure and content of the signal-response dataset is described, and the use of mathematical modeling approaches to analyze the dataset and discover specific signal-response relationships is illustrated. As a specific example, we selected a particularly strong set of identified signal-response correlations between ERK1/2 activity and S phase cell-cycle phenotype, identified in the mathematical data analysis, to posit a causal relationship between ERK1/2 and S phase cell cycle phenotype. We translated this posited causal relationship into an experimental hypothesis and experimentally test this hypothesis. We describe the validation of an experimental hypothesis based upon model-derived signal response relationships, and demonstrate a dual role for ERK1/2 in mediating cell-cycle arrest and apoptosis following DNA damage. Directions for the extension of the signal-response dataset and mathematical modeling approaches are outlined.by Andrea R. Tentner.Ph.D

    Cell decision processes in response to DNA DSB

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Biological Engineering Division, June 2006."February 2006."Includes bibliographical references (leaves 56-59).Following exposure to DNA damage, cells initiate a stress response involving multiple protein kinase signaling cascades. The DNA damage response results in one of several possible cell-fate decisions, or cellular responses: induction of cell-cycle arrest, initiation of DNA repair, activation of transcriptional programs, and either apoptosis, necrosis or cell senescence. The mechanisms by which cells make these decisions, and how cell fate depends upon variables such as DNA damage type and dose, and other environmental factors, is unknown. The process by which cells select among alternate fates following such stimuli, or "cues" is likely to involve a dynamic, multi-variate integration of signals from each of the kinase signaling components. A major goal of signal transduction research is to understand how information flows through signal transduction pathways downstream of a given cue, such as DNA damage, and how signals are integrated, in order to mediate cellular responses. Mathematical modeling approaches are necessary to advance our understanding of these processes.(cont.) Indeed, statistical mining and modeling of large datasets, consisting of quantitative, dynamic signaling and response measurements, is capable of yielding models that identify key signaling components in a given cue-response relationship, as well as models that are highly predictive of cellular response following novel cues that perturb the same network. We have validated a novel assay system that allows for the high throughput collection of quantitative and dynamic signaling data for 7 protein kinases or phospho-proteins known to be "hubs" in the DNA damage response and/or general stress response networks, including ATM, Chk2, H2AX, JNK, p38, ERK and p53. This novel high-throughput In-cell Western assay is based on immuno-fluorescent staining and detection of target proteins in a "whole cell" environment, performed and visualized in a 96-well plate format. This assay allows for the detection and measurement of up to 7 target proteins in triplicate, over up to 3 treatment regimes, or up to 21 signals for a single treatment, simultaneously. Pre-processing steps, and steps involved in the protocol itself are significantly fewer (and require smaller amount of most reagents and biological material),(cont.) as compared to traditional signal measurement methods, such as quantitative Western analysis and kinase assays. We have used this novel high-throughput In-cell Western assay to investigate the DNA damage response after the specific induction of DNA double strand breaks (DSB). We have measured the dynamics of seven "hub" proteins modified with activating phosphorylations (as a surrogate measure of protein activity) that span major branches of the DNA damage, stress, and death signaling networks, following the specific induction of DNA double strand breaks. Signaling proteins measured include ATM, Chk2, H2AX, JNK, p38, ERK and p53. In parallel with these signaling measurements, we have quantitatively measured corresponding phenotypic responses, such as cell cycle profile and apoptosis. In future work, we will use a Partial Least Squares (PLS) regression analysis approach to construct a statistical model using this data, which is predictive of the cellular responses included in our measurements, following perturbation of this branch of the DNA damage response network. This analysis should reveal key signaling components involved in the decision-making process (possible molecular targets for the improvement of cancer therapy regimens that rely upon the induction of DSB, e.g. the topoisomerase inhibitor, cisplatin), and provide a basis for constructing new, and improving existing, physics-chemical models of this branch of the DNA damage response network.by Andrea R. Tentner.S.M

    Combined experimental and computational analysis of DNA damage signaling reveals context-dependent roles for Erk in apoptosis and G1/S arrest after genotoxic stress

    Get PDF
    Data-driven modeling was used to analyze the complex signaling dynamics that connect DNA repair with cell survival, cell-cycle arrest, or apoptosis. This analysis revealed an unexpected role for Erk in G1/S arrest and apoptotic cell death following doxorubicin-induced DNA damage

    Accuracy of Eulerian–Eulerian, two-fluid CFD boiling models of subcooled boiling flows

    Get PDF
    Boiling flows are frequently found in industry and engineering due to the large amount of heat that can be transferred within such flows with minimum temperature differences. In the nuclear industry, boiling affects in different ways the operation of almost all water-cooled nuclear reactors. Recently, the use of computational fluid dynamic (CFD) approaches to predict boiling flows is increasing and, in the nuclear area, CFD is being developed to solve thermal hydraulic safety issues such as establishing the critical heat flux, which is perhaps the major threat to the integrity of nuclear fuel rods. In this paper, the accuracy of an Eulerian–Eulerian, two-fluid CFD model is evaluated over a large database of subcooled boiling flows, avoiding the rather popular case-by-case tuning of descriptive models to a limited number of experiments. The model includes a Reynolds stress turbulence model, the method of moments-based S-gamma population balance approach and a boiling model derived using the heat flux partitioning approach. The database covers a large range of conditions in subcooled boiling flows of water and refrigerants in vertical pipes and annular channels. Overall, a satisfactory predictive accuracy is achieved for some quantities of interest, such as the void fraction and the turbulence and liquid temperature fields, but results are less satisfactory in other areas, more specifically for the average bubble diameter and the mean velocity profiles close to the wall in annular channels. Agreement may be improved with advances in the treatment of large bubbles and bubble break-up and coalescence, as well as in improved modelling of the boiling region close to the wall, and more specifically the bubble departure diameter, the wall treatment and the contribution of bubbles to turbulence
    corecore