55 research outputs found

    Opportunities and constraints for implementing integrated land–sea management on islands

    Get PDF
    Despite a growing body of literature on integrated land-sea management (ILSM), very little critical assessment has been conducted in order to evaluate ILSM in practice on island systems. Here we develop indicators for assessing 10 integrated island management principles and evaluate the performance of planning and implementation in four island ILSM projects from the tropical Pacific across different governance structures. We find that where customary governance is still strongly respected and enabled through national legislation, ILSM in practice can be very effective at restricting access and use according to fluctuations in resource availability. However, decision-making under customary governance systems may be vulnerable to mismanagement. Government-led ILSM processes have the potential to design management actions that address the spatial scale of ecosystem processes and threats within the context of national policy and legislation, but may not fully capture broad stakeholder interests, and implementation may be poorly coordinated across highly dispersed island archipelagos. Private sector partnerships offer unique opportunities for resourcing island ILSM, although these are highly likely to be geared towards private sector interests that may change in the future and no longer align with community and/or national objectives. We identify consistent challenges that arise during island ILSM planning and implementation and offer recommendations for improvement

    The CBD Post‐2020 biodiversity framework: People's place within the rest of nature

    Get PDF
    Recognizing two decades of failure to achieve global goals and targets, parties to the Convention on Biological Diversity are in the final phase of negotiating a Post-2020 Global Biodiversity Framework for the conservation, sustainable use and benefit sharing of biodiversity. The framework attempts to set out pathways, goals and targets for the next decade to achieve positive biodiversity change. This perspective intends to help that framework set people firmly as part of nature, not apart from it. Despite work done so far through four meetings, new thinking and focus is still needed on ‘what’ changes must be conceptualized and implemented, and ‘how’ those changes are to be delivered. To help achieve that new thinking, as a broad range of people, many with a focus on aquatic systems, we highlight six key foci that offer potential to strengthen delivery of the framework and break the ‘business as usual’ logjam. These foci are as follows: (i) a reframing of the narrative of ‘people's relationship with the rest of nature’ and emphasize the crucial role of Indigenous Peoples and Local Communities in delivering positive biodiversity change; (ii) moving beyond a focus on species and places by prioritizing ecosystem function and resilience; (iii) supporting a diversity of top-down and bottom-up governance processes; (iv) embracing new technologies to make and measure progress; (v) linking business more effectively with biodiversity and (vi) leveraging the power of international agencies and programmes. Given they are linked to a greater or lesser degree, implementing these six foci together will lead to a much-needed broadening of the framework, especially those of business and broader urban civil society, as well as those of Indigenous Peoples and Local Communities. Read the free Plain Language Summary for this article on the Journal blog

    Taking the Metabolic Pulse of the World\u27s Coral Reefs

    Get PDF
    Worldwide, coral reef ecosystems are experiencing increasing pressure from a variety of anthropogenic perturbations including ocean warming and acidification, increased sedimentation, eutrophication, and overfishing, which could shift reefs to a condition of net calcium carbonate (CaCO3) dissolution and erosion. Herein, we determine the net calcification potential and the relative balance of net organic carbon metabolism (net community production; NCP) and net inorganic carbon metabolism (net community calcification; NCC) within 23 coral reef locations across the globe. In light of these results, we consider the suitability of using these two metrics developed from total alkalinity (TA) and dissolved inorganic carbon (DIC) measurements collected on different spatiotemporal scales to monitor coral reef biogeochemistry under anthropogenic change. All reefs in this study were net calcifying for the majority of observations as inferred from alkalinity depletion relative to offshore, although occasional observations of net dissolution occurred at most locations. However, reefs with lower net calcification potential (i.e., lower TA depletion) could shift towards net dissolution sooner than reefs with a higher potential. The percent influence of organic carbon fluxes on total changes in dissolved inorganic carbon (DIC) (i.e., NCP compared to the sum of NCP and NCC) ranged from 32% to 88% and reflected inherent biogeochemical differences between reefs. Reefs with the largest relative percentage of NCP experienced the largest variability in seawater pH for a given change in DIC, which is directly related to the reefs ability to elevate or suppress local pH relative to the open ocean. This work highlights the value of measuring coral reef carbonate chemistry when evaluating their susceptibility to ongoing global environmental change and offers a baseline from which to guide future conservation efforts aimed at preserving these valuable ecosystems

    Challenges, insights and perspectives associated with using social-ecological science for marine conservation

    Get PDF
    International audienceHere, we synthesize conceptual frameworks, applied modeling approaches, and as case studies to highlight complex social-ecological system (SES) dynamics that inform environmental policy, conservation and management. Although a set of “good practices” about what constitutes a good SES study are emerging, there is still a disconnection between generating SES scientific studies and providing decision-relevant information to policy makers. Classical single variable/hypothesis studies rooted in one or two disciplines are still most common, leading to incremental growth in knowledge about the natural or social system, but rarely both. The recognition of human dimensions is a key aspect of successful planning and implementation in natural resource management, ecosystem-based management, fisheries management, and marine conservation. The lack of social data relating to human-nature interactions in this particular context is now seen as an omission, which can often erode the efficacy of any resource management or conservation action. There have been repeated calls for a transdisciplinary approach to complex SESs that incorporates resilience, complexity science characterized by intricate feedback interactions, emergent processes, non-linear dynamics and uncertainty. To achieve this vision, we need to embrace diverse research methodologies that incorporate ecology, sociology, anthropology, political science, economics and other disciplines that are anchored in empirical data. We conclude that to make SES research most useful in adding practical value to conservation planning, marine resource management planning processes and implementation, and the integration of resilience thinking into adaptation strategies, more research is needed on (1) understanding social-ecological landscapes and seascapes and patterns that would ensure planning process legitimacy, (2) costs of transformation (financial, social, environmental) to a stable resilient social-ecological system, (3) overcoming place-based data collection challenges as well as modeling challenges

    When ecosystems and their services are not co-located: oceans and coasts

    No full text
    Local, regional, and global policies to manage protect and restore our oceans and coasts call for the inclusion of ecosystem services (ES) in policy-relevant research. Marine and coastal ES and the associated benefits to humans are usually assessed, quantified, and mapped at the ecosystem level to inform policy and decision-making. Yet those benefits may reach humans beyond the provisioning ecosystem, at the regional or even global level. Current efforts to map ES generated by a single ecosystem rarely consider the distribution of benefits beyond the ecosystem itself, especially at the regional or global level. In this article, we elaborate on the concept of "extra-local" ES to refer to those ES generating benefits that are enjoyed far from the providing ecosystem, focusing on the marine environment. We emphasize the spatial dimension of the different components of the ES provision framework and apply the proposed conceptual framework to food provision and climate regulation ES provided by marine and coastal ecosystems. We present the different extents of the mapping outputs generated by the ecosystem-based vs. the extra-local mapping approach and discuss practical and conceptual challenges of the approach. Lack of relevant ES mapping methodologies and lack of data appeared to be the most crucial bottlenecks in applying the extra-local approach for marine and coastal ES. We urge for more applications of the proposed framework that can improve marine and coastal ES assessments help fill in data gaps and generate more robust data. Such assessments could better inform marine and coastal policies, especially those linked to equal attribution of benefits, compensation schemes and poverty alleviation

    Styles and Timing of Volatile-driven Activity in the Eastern Hellas Region of Mars

    No full text
    Hellas basin, the largest well-preserved impact structure on the Martian surface, is Mars deepest depositional sink and has long been recognized as a source for global dust storms. The basin and surrounding highlands span a wide range in latitude and elevation, exhibit landforms shaped by a diversity of geologic processes, and preserve exposures of Noachian, Hesperian, and Amazonian units. Geologically contemporaneous volcanism and volatile-driven activity in the circum-Hellas highlands provide resources for potential Martian life. Hellas is a geologically significant region for evaluating volatile abundance, distribution and cycling and changes in surface conditions on Mars. Current work integrates geologic studies of the basin floor and east rim using Viking Orbiter, Mars Global Surveyor, and Mars Odyssey datasets to provide a synthesis of the history of volatiles in the region

    Follow that fish: Uncovering the hidden blue economy in coral reef fisheries

    No full text
    <div><p>Despite their importance for human well-being, nearshore fisheries are often data poor, undervalued, and underappreciated in policy and development programs. We assess the value chain for nearshore Hawaiian coral reef fisheries, mapping post-catch distribution and disposition, and quantifying associated monetary, food security, and cultural values. We estimate that the total annual value of the nearshore fishery in Hawaiʻi is 10.3−10.3-16.4 million, composed of non-commercial (7.2−7.2-12.9 million) and commercial (2.97millionlicensed+2.97 million licensed + 148,500-$445,500 unlicensed) catch. Hawaii’s nearshore fisheries provide >7 million meals annually, with most (>5 million) from the non-commercial sector. Over a third (36%) of meals were planktivores, 26% piscivores, 21% primary consumers, and 18% secondary consumers. Only 62% of licensed commercial catch is accounted for in purchase reports, leaving 38% of landings unreported in sales. Value chains are complex, with major buyers for the commercial fishery including grocery stores (66%), retailers (19%), wholesalers (14%), and restaurants (<1%), who also trade and sell amongst themselves. The bulk of total nearshore catch (72–74%) follows a short value chain, with non-commercial fishers keeping catch for household consumption or community sharing. A small amount (~37,000kg) of reef fish—the equivalent of 1.8% of local catch—is imported annually into Hawaiʻi, 23,000kg of which arrives as passenger luggage on commercial flights from Micronesia. Evidence of exports to the US mainland exists, but is unquantifiable given existing data. Hawaiian nearshore fisheries support fundamental cultural values including subsistence, activity, traditional knowledge, and social cohesion. These small-scale coral reef fisheries provide large-scale benefits to the economy, food security, and cultural practices of Hawaiʻi, underscoring the need for sustainable management. This research highlights the value of information on the value chain for small-scale production systems, making the hidden economy of these fisheries visible and illuminating a range of conservation interventions applicable to Hawaiʻi and beyond.</p></div

    Description of fish dealer categories according to Hawai‘i DAR.

    No full text
    <p>Description of fish dealer categories according to Hawai‘i DAR.</p

    Value chain of nearshore fish in Hawaiʻi.

    No full text
    <p>Dark blue arrows represent quantified flows while light blue arrows indicate flows of unknown quantity. Known flows are considered to be underestimates and are nested within larger light blue unknown flows. Production comes from non-commercial and commercial fisheries, with some imports. The non-commercial local fishery largely supplies non-commercial consumption and sharing. Commercial catch derives from both licensed and non-licensed fishers. Only licensed fishers are required to report catch to state officials. Most (at least 62%) of the licensed catch stays in the formal market, and was sold to dealers, who voluntarily report their purchases entering commercial markets directly from fishers. Dealers also trade an undisclosed amount between each other. An unknown amount of nearshore fish is exported from Hawaiʻi. Both the commercial and non-commercial sectors add value to the economy.</p
    • 

    corecore