4 research outputs found

    Poly(2-propyl-2-oxazoline)s in Aqueous Methanol : To Dissolve or not to Dissolve

    Get PDF
    At room temperature, poly(N-isopropylacrylamide) (PNIPAM) is soluble in water and methanol, but it is not soluble in certain water/methanol mixtures. This phenomenon, known as cononsolvency, has been explored in great detail experimentally and theoretically in an attempt to understand the complex interactions occurring in the ternary PNIPAM/water/co-nonsolvent system. Yet little is known about the effects of the polymer structure on cononsolvency. To address this point, we investigated the temperature-dependent solution properties in water, methanol, and mixtures of the two solvents of poly(2-cyclopropyl-2-oxazoline) (PcyPOx) and two structural isomers of PNIPAM (M-n similar to 11 kg/mol): poly(2-isopropyl-2-oxazoline) (PiPOx) and poly(2-n-propyl-2-oxazoline) (PnPOx). The phase diagram of the ternary water/methanol/poly(2-propyl-2-oxazolines) (PPOx) systems, constructed based on cloud point (T-CP) measurements, revealed that PnPOx exhibits cononsolvency in water/methanol mixtures. In contrast, methanol acts as a cosolvent for PiPOx and PcyPOx in water. The enthalpy, Delta H, and temperature, T-max, of the coil-to-globule transition of the three polymers in various water/methanol mixtures were measured by high-sensitivity differential scanning calorimetry. T-max follows the same trends as T-CP, confirming the cononsolvency of PnPOx and the cosolvency of PiPOx and PcyPOx. Delta H decreases linearly as a function of the methanol content for all PPOx systems. Ancillary high-resolution H-1 NMR spectroscopy studies of PPOx solutions in D2O and methanol-d(4), coupled with DOSY and NOESY experiments revealed that the n-propyl group of PnPOx rotates freely in D2O, whereas the rotation of the isopropyl and cyclopropyl groups of PiPOx and PcyPOx, respectively, is limited due to steric restriction. This factor appears to play an important role in the case of the PPOxs/water/methanol ternary system.Peer reviewe

    Poly(2-propyl-2-oxazoline)s in Aqueous Methanol : To Dissolve or not to Dissolve

    Get PDF
    At room temperature, poly(N-isopropylacrylamide) (PNIPAM) is soluble in water and methanol, but it is not soluble in certain water/methanol mixtures. This phenomenon, known as cononsolvency, has been explored in great detail experimentally and theoretically in an attempt to understand the complex interactions occurring in the ternary PNIPAM/water/co-nonsolvent system. Yet little is known about the effects of the polymer structure on cononsolvency. To address this point, we investigated the temperature-dependent solution properties in water, methanol, and mixtures of the two solvents of poly(2-cyclopropyl-2-oxazoline) (PcyPOx) and two structural isomers of PNIPAM (M-n similar to 11 kg/mol): poly(2-isopropyl-2-oxazoline) (PiPOx) and poly(2-n-propyl-2-oxazoline) (PnPOx). The phase diagram of the ternary water/methanol/poly(2-propyl-2-oxazolines) (PPOx) systems, constructed based on cloud point (T-CP) measurements, revealed that PnPOx exhibits cononsolvency in water/methanol mixtures. In contrast, methanol acts as a cosolvent for PiPOx and PcyPOx in water. The enthalpy, Delta H, and temperature, T-max, of the coil-to-globule transition of the three polymers in various water/methanol mixtures were measured by high-sensitivity differential scanning calorimetry. T-max follows the same trends as T-CP, confirming the cononsolvency of PnPOx and the cosolvency of PiPOx and PcyPOx. Delta H decreases linearly as a function of the methanol content for all PPOx systems. Ancillary high-resolution H-1 NMR spectroscopy studies of PPOx solutions in D2O and methanol-d(4), coupled with DOSY and NOESY experiments revealed that the n-propyl group of PnPOx rotates freely in D2O, whereas the rotation of the isopropyl and cyclopropyl groups of PiPOx and PcyPOx, respectively, is limited due to steric restriction. This factor appears to play an important role in the case of the PPOxs/water/methanol ternary system.Peer reviewe

    Lifetime vs. rate capability: Understanding the role of FEC and VC in high-energy Li-ion batteries with nano-silicon anodes

    Get PDF
    Fluoroethylene carbonate (FEC) and vinylene carbonate (VC) are the most frequently used electrolyte components to enhance the lifetime of anode materials in Li-ion batteries, but for silicon it is still ambiguous when FEC or VC is more beneficial. Herein, a nanostructured silicon/carbon anode derived from low-cost HSiCl3 is tailored by the rational choice of the electrolyte component, to obtain an anode material outperforming current complex silicon structures. We demonstrate highly reversible areal capacities of up to 5 mA h/cm2 at 4.4 mg/cm2 mass loading, a specific capacity of 1280 mA h/gElectrode, a capacity retention of 81% after 500 deep-discharge cycles versus lithium metal and successful full-cell tests with high-voltage cathodes meeting the requirements for real application. Electrochemical impedance spectroscopy and post-mortem investigation provide new insights in tailoring the interfacial properties of silicon-based anodes for high performance anode materials based on an alloying mechanism with large volume changes. The role of fluorine in the FEC-derived interfacial layer is discussed in comparison with the VC-derived layer and possible degradation mechanisms are proposed. We believe that this study gives a valuable understanding and provides new strategies on the facile use of additives for highly reversible silicon anodes in Li-ion batteries.Fil: Jaumann, Tony. Ifw Dresden; AlemaniaFil: Balach, Juan Manuel. Ifw Dresden; AlemaniaFil: Langklotz, Ulrike. Technische Universität Dresden; AlemaniaFil: Sauchuk, Viktar. Fraunhofer Institute for Ceramic Materials and Systems; AlemaniaFil: Fritsch, Marco. Fraunhofer Institute for Ceramic Materials and Systems; AlemaniaFil: Michaelis, Alexander. Technische Universität Dresden; AlemaniaFil: Teltevskij, Valerij. Leibniz Institute for Solid State and Materials Research; AlemaniaFil: Mikhailova, Daria. Leibniz Institute for Solid State and Materials Research; AlemaniaFil: Oswald, Steffen. Leibniz Institute for Solid State and Materials Research; AlemaniaFil: Klose, Markus. Leibniz Institute for Solid State and Materials Research; Alemania. Technische Universität Dresden; AlemaniaFil: Stephani, Guenter. Branch Lab Dresden. Fraunhofer Institute for Manufacturing Technology and Advanced Materials; ArgentinaFil: Hauser, Ralf. Branch Lab Dresden. Fraunhofer Institute for Manufacturing Technology and Advanced Materials; ArgentinaFil: Eckert, Jürgen. Technische Universität Dresden; Alemania. Leibniz Institute for Solid State and Materials Research; AlemaniaFil: Giebeler, Lars. Leibniz Institute for Solid State and Materials Research; Alemania. Technische Universität Dresden; Alemani
    corecore