18 research outputs found

    Applications of stable water and carbon isotopes in watershed research: Weathering, carbon cycling, and water balances

    Get PDF
    Research on rivers has traditionally involved concentration and flux measurements to better understand weathering, transport and cycling of materials from land to ocean. As a relatively new tool, stable isotope measurements complement this type of research by providing an extra label to characterize origin of the transportedmaterial, its transfer mechanisms, and natural versus anthropogenic influences. These new stable isotope techniques are scalable across a wide range of geographic and temporal scales. This review focuses on three aspects of hydrological and geochemical river research that are of prime importance to the policy issues of climate change and include utilization of stable water and carbon isotopes: (i) silicate and carbonate weathering in river basins, (ii) the riverine carbon and oxygen cycles, and (iii) water balances at the catchment scale. Most studies at watershed scales currently focus on water and carbon balances but future applications hold promise to integrate sediment fluxes and turnover, ground and surface water interactions, as well as the understanding of contaminant sources and their effects in river systems

    Proof of concept for a passive sampler for monitoring of gaseous elemental mercury in artisanal gold mining

    Get PDF
    Mercury emissions from artisanal gold mining operations occurring in roughly 80 developing countries are a major workplace health hazard for millions of people as well as the largest contributor to global mercury pollution. There are no portable, cheap, and rapid methods able to inform workers or health practitioners of mercury exposure on site in remote locations. In this work, a proof of concept for a miniaturized mercury sampler, prepared by the direct reduction of gold into the porous nanostructures of Vycor glass (PVG), is introduced. Mercury retention on the PVG/Au sampler induces significant color changes, due to the formation of Au-Hg amalgam that affects the surface plasmon resonance characteristics of the material. The color change can potentially be quantified by the analysis of pictures obtained with a cell phone camera rapidly and onsite. Laboratory experiments showed the viability of using PVG/Au as passive sampler for monitoring of Hg degrees. PVG/Au samplers were then deployed in an artisanal and small-scale gold mining (ASGM) operations in Burkina Faso and it was able to indicate personal mercury exposures. The amount of mercury quantified in the samplers for all miners was higher than the current personal exposure limit set by the US Occupational Safety & Health Administration (OSHA).FAPESPNSERCUnited States Department of State (USDoS)United Nations Industrial Development Organization (UNIDO)post-doctoral fellowship from CNPq (Science Without Borders)post-doctoral fellowship from CIHRArtisanal Gold CouncilMinistry of the EnvironmentMinistry of MinesMinistry of Health of Burkina FasoUniv Fed Sao Paulo, Inst Sci & Technol, BR-12231280 Sao Jose Dos Campos, SP, BrazilUniv Victoria, Dept Chem, POB 3055, Victoria, BC V8W 3V6, CanadaUniv Victoria, Dept Geog, Victoria, BC V8W 3P2, CanadaArtisanal Gold Council, C100-633 Courtney St, Victoria, BC V8W 1B9, CanadaUniv Estadual Campinas, Inst Chem, POB 6154, BR-13081970 Campinas, SP, BrazilUniv Estadual Campinas, Inst Chem, Funct Mat Lab, POB 6154, BR-13083970 Campinas, SP, BrazilUniv Fed Sao Paulo, Inst Sci & Technol, BR-12231280 Sao Jose Dos Campos, SP, BrazilFAPESP: 2016/03559-7FAPESP: 2013/22127-2FAPESP: 2014/50906-9United States Department of State (USDoS): S-LMAQM-15-GR-1178United Nations Industrial Development Organization (UNIDO): GF/RAF/12/001Web of Scienc

    Toward an assessment of the global inventory of present-day mercury releases to freshwater environments

    Get PDF
    Aquatic ecosystems are an essential component of the biogeochemical cycle of mercury (Hg), as inorganic Hg can be converted to toxic methylmercury (MeHg) in these environments and reemissions of elemental Hg rival anthropogenic Hg releases on a global scale. Quantification of effluent Hg releases to aquatic systems globally has focused on discharges to the global oceans, rather than contributions to freshwater systems that affect local exposures and risks associated with MeHg. Here we produce a first-estimate of sector-specific, spatially resolved global aquatic Hg discharges to freshwater systems. We compare our release estimates to atmospheric sources that have been quantified elsewhere. By analyzing available quantitative and qualitative information, we estimate that present-day global Hg releases to freshwater environments (rivers and lakes) associated with anthropogenic activities have a lower bound of ~1000 Mg· a−1. Artisanal and small-scale gold mining (ASGM) represents the single largest source, followed by disposal of mercury-containing products and domestic waste water, metal production, and releases from industrial installations such as chlor-alkali plants and oil refineries. In addition to these direct anthropogenic inputs, diffuse inputs from land management activities and remobilization of Hg previously accumulated in terrestrial ecosystems are likely comparable in magnitude. Aquatic discharges of Hg are greatly understudied and further constraining associated data gaps is crucial for reducing the uncertainties in the global biogeochemical Hg budget

    Mercury watch portal : charting the improvement of artisanal and small-scale gold mining; final technical report (1 July 2012 - 1 March 2014)

    No full text
    Key to the ongoing sustainability of MercuryWatch and its website is consistent input of updated information from some 70 countries in the developing world. The project has taken important steps to develop inventory methodologies and train governments and practitioners in monitoring inventory. The aim is to chart reductions (or increases) of mercury use and improvement of artisanal and small scale gold mining (ASGM), to contribute to development and formalization of the ASGM sector, and ideally towards construction of mercury-free processing plants. The paper provides details on training programs, collection and processing of information, with greater access to website information streaming

    Effects of Small-Scale Gold Mining Tailings on the Underwater Light Field in the Tapajós River Basin, Brazilian Amazon

    No full text
    Artisanal and Small-scale Gold Mining (ASGM) within the Amazon region has created several environmental impacts, such as mercury contamination and changes in water quality due to increased siltation. This paper describes the effects of water siltation on the underwater light environment of rivers under different levels of gold mining activities in the Tapajós River Basin. Furthermore, it investigates possible impacts on the phytoplankton community. Two field campaigns were conducted in the Tapajós River Basin, during high water level and during low water level seasons, to measure Inherent and Apparent Optical Properties (IOPs, AOPs), including scattering (b) and absorption (a) coefficients and biogeochemical data (sediment content, pigments, and phytoplankton quantification). The biogeochemical data was separated into five classes according to the concentration of total suspended solids (TSS) ranging from 1.8 mg·L−1 to 113.6 mg·L−1. The in-water light environment varied among those classes due to a wide range of concentrations of inorganic TSS originated from different levels of mining activities. For tributaries with low or no influence of mining tailings (TSS up to 6.8 mg·L−1), waters are relatively more absorbent with b:a ratio of 0.8 at 440 nm and b660 magnitude of 2.1 m−1. With increased TSS loadings from mining operations (TSS over 100 mg·L−1), the scattering process prevails over absorption (b:a ratio of 10.0 at 440 nm), and b660 increases to 20.8 m−1. Non-impacted tributaries presented a critical depth for phytoplankton productivity of up to 6.0 m with available light evenly distributed throughout the spectra. Whereas for greatly impacted waters, attenuation of light was faster, reducing the critical depth to about 1.7 m, with most of the available light comprising of red wavelengths. Overall, a dominance of diatoms was observed for the upstream rivers, whereas cyanobacteria prevailed in the low section of the Tapajós River. The results suggest that the spatial and temporal distribution of phytoplankton in the Tapajós River Basin is not only a function of light availability, but rather depends on the interplay of factors, including flood pulse, water velocity, nutrient availability, and seasonal variation of incoming irradiance. Ongoing research indicates that the effects of mining tailings on the aquatic environment, described here, are occurring in several rivers within the Amazon River Basin

    Distribution of Artisanal and Small-Scale Gold Mining in the Tapajós River Basin (Brazilian Amazon) over the Past 40 Years and Relationship with Water Siltation

    No full text
    An innovative remote sensing approach that combines land-use change and water quality information is proposed in order to investigate if Artisanal and Small-scale Gold Mining (ASGM) area extension is associated with water siltation in the Tapajós River Basin (Brazil), containing the largest small-scale gold mining district in the world. Taking advantage of a 40-year period of the multi-satellite imagery archive, the objective of this paper is to build a normalized time-series in order to evaluate the influence of temporal mining expansion on the water siltation data (TSS, Total Suspended Solids concentration) derived from previous research. The methodological approach was set to deliver a full characterization of the ASGM expansion from its initial stages in the early 1970s to the present. First, based on IRS/LISSIII images acquired in 2012, the historical Landsat image database (1973–2001) was corrected for radiometric and atmospheric effects using dark vegetation as reference to create a normalized time-series. Next, a complete update of the mining areas distribution in 2012 derived from the TerraClass Project (an official land-use classification for the Brazilian Amazon) was conducted having IRS/LISSIII as the base map with the support of auxiliary data and vector editing. Once the ASGM in 2012 was quantified (261.7 km2) and validated with photos, a reverse classification of ASGM in 2001 (171.7 km2), 1993 (166.3 km2), 1984 (47.5 km2), and 1973 (15.4 km2) with the use of Landsat archives was applied. This procedure relies on the assumption that ASGM changes in the land cover are severe and remain detectable from satellite sensors for decades. The mining expansion area over time was then combined with the (TSS) data retrieved from the same atmospherically corrected satellite imagery based on the literature. In terms of gold mining expansion and water siltation effects, four main periods of ASGM activities were identified in the study area: (i) 1958–1977, first occurrence of mining activities and low water impacts; (ii) 1978–1993, introduction of low-budget mechanization associated with very high gold prices resulting in large mining area expansion and high water siltation levels; (iii) 1994–2003, general recession of ASGM activities and exhaustion of easy-access gold deposits, resulting in decreased TSS; (iv) 2004 to present, intensification of ASGM encouraged by high gold prices, resulting in an increase of TSS

    Effects of Small-Scale Gold Mining Tailings on the Underwater Light Field in the Tapajós River Basin, Brazilian Amazon

    No full text
    Artisanal and Small-scale Gold Mining (ASGM) within the Amazon region has created several environmental impacts, such as mercury contamination and changes in water quality due to increased siltation. This paper describes the effects of water siltation on the underwater light environment of rivers under different levels of gold mining activities in the Tapajós River Basin. Furthermore, it investigates possible impacts on the phytoplankton community. Two field campaigns were conducted in the Tapajós River Basin, during high water level and during low water level seasons, to measure Inherent and Apparent Optical Properties (IOPs, AOPs), including scattering (b) and absorption (a) coefficients and biogeochemical data (sediment content, pigments, and phytoplankton quantification). The biogeochemical data was separated into five classes according to the concentration of total suspended solids (TSS) ranging from 1.8 mg·L−1 to 113.6 mg·L−1. The in-water light environment varied among those classes due to a wide range of concentrations of inorganic TSS originated from different levels of mining activities. For tributaries with low or no influence of mining tailings (TSS up to 6.8 mg·L−1), waters are relatively more absorbent with b:a ratio of 0.8 at 440 nm and b660 magnitude of 2.1 m−1. With increased TSS loadings from mining operations (TSS over 100 mg·L−1), the scattering process prevails over absorption (b:a ratio of 10.0 at 440 nm), and b660 increases to 20.8 m−1. Non-impacted tributaries presented a critical depth for phytoplankton productivity of up to 6.0 m with available light evenly distributed throughout the spectra. Whereas for greatly impacted waters, attenuation of light was faster, reducing the critical depth to about 1.7 m, with most of the available light comprising of red wavelengths. Overall, a dominance of diatoms was observed for the upstream rivers, whereas cyanobacteria prevailed in the low section of the Tapajós River. The results suggest that the spatial and temporal distribution of phytoplankton in the Tapajós River Basin is not only a function of light availability, but rather depends on the interplay of factors, including flood pulse, water velocity, nutrient availability, and seasonal variation of incoming irradiance. Ongoing research indicates that the effects of mining tailings on the aquatic environment, described here, are occurring in several rivers within the Amazon River Basin
    corecore