112 research outputs found

    Drosophila Squid/hnRNP helps Dynein switch from a gurken mRNA transport motor to an ultrastructural static anchor in sponge bodies

    Get PDF
    In Drosophila oocytes, dorso-anterior transport of gurken mRNA requires both the Dynein motor and the heterogeneous nuclear ribonucleoprotein (hnRNP) Squid. We show that gurken transcripts are transported directly on microtubules by Dynein in nonmembranous electron-dense transport particles that also contain Squid and the transport cofactors Egalitarian and Bicaudal-D. At its destination, gurken mRNA is statically anchored by Dynein within large electron-dense cytoplasmic structures known as sponge bodies. Egalitarian and Bicaudal-D contribute only to active transport, whereas Dynein and Squid are also required for gurken mRNA anchoring and the integrity of sponge bodies. Disrupting Dynein function disperses gurken mRNA homogeneously throughout the cytoplasm, whereas the loss of Squid function converts the sponge bodies into active transport particles. We propose that Dynein acts as a static structural component for the assembly of gurken mRNA transport and anchoring complexes, and that Squid is required for the dynamic conversion of transport particles to sponge bodies

    A Loss of Function Analysis of Host Factors Influencing Vaccinia virus Replication by RNA Interference

    Get PDF
    Vaccinia virus (VACV) is a large, cytoplasmic, double-stranded DNA virus that requires complex interactions with host proteins in order to replicate. To explore these interactions a functional high throughput small interfering RNA (siRNA) screen targeting 6719 druggable cellular genes was undertaken to identify host factors (HF) influencing the replication and spread of an eGFP-tagged VACV. The experimental design incorporated a low multiplicity of infection, thereby enhancing detection of cellular proteins involved in cell-to-cell spread of VACV. The screen revealed 153 pro- and 149 anti-viral HFs that strongly influenced VACV replication. These HFs were investigated further by comparisons with transcriptional profiling data sets and HFs identified in RNAi screens of other viruses. In addition, functional and pathway analysis of the entire screen was carried out to highlight cellular mechanisms involved in VACV replication. This revealed, as anticipated, that many pro-viral HFs are involved in translation of mRNA and, unexpectedly, suggested that a range of proteins involved in cellular transcriptional processes and several DNA repair pathways possess anti-viral activity. Multiple components of the AMPK complex were found to act as pro-viral HFs, while several septins, a group of highly conserved GTP binding proteins with a role in sequestering intracellular bacteria, were identified as strong anti-viral VACV HFs. This screen has identified novel and previously unexplored roles for cellular factors in poxvirus replication. This advancement in our understanding of the VACV life cycle provides a reliable knowledge base for the improvement of poxvirus-based vaccine vectors and development of anti-viral theraputics

    ParticleStats: open source software for the analysis of particle motility and cytoskeletal polarity

    Get PDF
    The study of dynamic cellular processes in living cells is central to biology and is particularly powerful when the motility characteristics of individual objects within cells can be determined and analysed statistically. However, commercial programs only offer a limited range of inflexible analysis modules and there are currently no open source programs for extensive analysis of particle motility. Here, we describe ParticleStats (http://www.ParticleStats.com), a web server and open source programs, which input the X,Y coordinate positions of objects in time, and output novel analyses, graphical plots and statistics for motile objects. ParticleStats comprises three separate analysis programs. First, ParticleStats:Directionality for the global analysis of polarity, for example microtubule plus end growth in Drosophila oocytes. Second, ParticleStats:Compare for the analysis of saltatory movement in terms of runs and pauses. This can be applied to chromosome segregation and molecular motor-based movements. Thirdly ParticleStats:Kymographs for the analysis of kymograph images, for example as applied to separation of chromosomes in mitosis. These analyses have provided key insights into molecular mechanisms that are not possible from qualitative analysis alone and are widely applicable to many other cell biology problems

    A Novel Complex of Nucleoporins, Which Includes Sec13p and a Sec13p Homolog, Is Essential for Normal Nuclear Pores

    Get PDF
    AbstractIn a genetic screen for nucleoporin-interacting components, a novel nuclear pore protein Nup84p, which exhibits homology to mammalian Nup107p, was isolated. Nup84p forms a complex with five proteins, of which Nup120p, Nup85p, Sec13p, and a Sec13p homolog were identified. Upon isolation of Sec13p–ProtA, nucleoporins were still associated, but the major copurifying band was a 150 kDa protein, showing that Sec13p occurs in two complexes. Disruption of any of the genes encoding Nup84p, Nup85p, or Nup120p caused defects in nuclear membrane and nuclear pore complex organization, as well as in poly(A)+ RNA transport. Thus, the Nup84p complex in conjunction with Sec13-type proteins is required for correct nuclear pore biogenesis

    Advanced optical imaging in living embryos

    Get PDF
    Developmental biology investigations have evolved from static studies of embryo anatomy and into dynamic studies of the genetic and cellular mechanisms responsible for shaping the embryo anatomy. With the advancement of fluorescent protein fusions, the ability to visualize and comprehend how thousands to millions of cells interact with one another to form tissues and organs in three dimensions (xyz) over time (t) is just beginning to be realized and exploited. In this review, we explore recent advances utilizing confocal and multi-photon time-lapse microscopy to capture gene expression, cell behavior, and embryo development. From choosing the appropriate fluorophore, to labeling strategy, to experimental set-up, and data pipeline handling, this review covers the various aspects related to acquiring and analyzing multi-dimensional data sets. These innovative techniques in multi-dimensional imaging and analysis can be applied across a number of fields in time and space including protein dynamics to cell biology to morphogenesis

    NXF2 is involved in cytoplasmic mRNA dynamics through interactions with motor proteins

    Get PDF
    Tap/NXF1, the founding member of the evolutionarily conserved NXF (Nuclear RNA export Factor) family of proteins, is required for the nuclear export of bulk poly(A)+ RNAs. In mice, three additional NXF family genes (NXF2, NXF3, NXF7) have been identified and characterized to date. Cumulative data suggest that NXF family members play roles, not only in nuclear mRNA export, but also in various aspects of post-transcriptional mRNA metabolism. In order to better understand the functional role of NXF2, we searched for its binding partners by yeast two-hybrid screening and identified several cytoplasmic motor proteins, including KIF17. The interaction of NXF2 with KIF17, which was confirmed by GST pull-down and co-immunoprecipitation assays, is mediated by the N-terminal domain of NXF2, which is required for the punctate localization patterns in dendrites of primary neurons. We also found that the NXF2-containing dendritic granules, which were co-localized with KIF17, mRNA and Staufen1, a known component of neuronal mRNA granules, moved bidirectionally along dendrites in a microtubule-dependent manner. These results suggest that NXF2, a nucleo-cytoplasmic mRNA transporter, plays additional roles in the cytoplasmic localization of mRNAs through interactions with cytoplasmic motor proteins

    An RNA Transport System in Candida albicans Regulates Hyphal Morphology and Invasive Growth

    Get PDF
    Localization of specific mRNAs is an important mechanism through which cells achieve polarity and direct asymmetric growth. Based on a framework established in Saccharomyces cerevisiae, we describe a She3-dependent RNA transport system in Candida albicans, a fungal pathogen of humans that grows as both budding (yeast) and filamentous (hyphal and pseudohyphal) forms. We identify a set of 40 mRNAs that are selectively transported to the buds of yeast-form cells and to the tips of hyphae, and we show that many of the genes encoded by these mRNAs contribute to hyphal development, as does the transport system itself. Although the basic system of mRNA transport is conserved between S. cerevisiae and C. albicans, we find that the cargo mRNAs have diverged considerably, implying that specific mRNAs can easily move in and out of transport control over evolutionary timescales. The differences in mRNA cargos likely reflect the distinct selective pressures acting on the two species
    corecore