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Abstract

Vaccinia virus (VACV) is a large, cytoplasmic, double-stranded DNA virus that requires complex interactions with host
proteins in order to replicate. To explore these interactions a functional high throughput small interfering RNA (siRNA)
screen targeting 6719 druggable cellular genes was undertaken to identify host factors (HF) influencing the replication and
spread of an eGFP-tagged VACV. The experimental design incorporated a low multiplicity of infection, thereby enhancing
detection of cellular proteins involved in cell-to-cell spread of VACV. The screen revealed 153 pro- and 149 anti-viral HFs that
strongly influenced VACV replication. These HFs were investigated further by comparisons with transcriptional profiling data
sets and HFs identified in RNAi screens of other viruses. In addition, functional and pathway analysis of the entire screen was
carried out to highlight cellular mechanisms involved in VACV replication. This revealed, as anticipated, that many pro-viral
HFs are involved in translation of mRNA and, unexpectedly, suggested that a range of proteins involved in cellular
transcriptional processes and several DNA repair pathways possess anti-viral activity. Multiple components of the AMPK
complex were found to act as pro-viral HFs, while several septins, a group of highly conserved GTP binding proteins with a
role in sequestering intracellular bacteria, were identified as strong anti-viral VACV HFs. This screen has identified novel and
previously unexplored roles for cellular factors in poxvirus replication. This advancement in our understanding of the VACV
life cycle provides a reliable knowledge base for the improvement of poxvirus-based vaccine vectors and development of
anti-viral theraputics.
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Introduction

Vaccinia virus (VACV) is a large double-stranded DNA virus with

a complex cytoplasmic life cycle. It is the prototypical member of

the orthopoxviridae genus of the Poxviridae family which includes

Variola virus (the causative agent of smallpox), Monkeypox virus and

Ectromelia virus. VACV was used as a vaccine in the successful

global eradication of smallpox in the 20th century and closely

related attenuated strains such as Modified Vaccinia virus Ankara

(MVA) are now some of the most frequently used recombinant

vaccine vectors against a variety of human and animal diseases

including HIV, malaria and tuberculosis [1]. Understanding the

VACV life cycle is therefore important since it provides the base

for the development of efficient and safe novel vaccines.

VACV, like all other viruses, harnesses the cell to enable its

replication. It turns off or subverts multiple crucial anti-viral

pathways including cytokine production, Toll-like receptor path-

ways, NF-kB activation and the dsRNA PKR response [2–8]. In

addition VACV suppresses both intrinsic and extrinsic pro-

apoptotic pathways [9] and activates numerous anti-apoptotic,

pro-survival pathways including the PI3K/Akt pathway [10,11],

the MEK/ERK pathway [12,13], the p38 MAPK pathway [14]

and the MAPK/JNK pathway [14,15]. Modulation of so many

different signalling pathways prevents viral-induced premature cell

death and contributes to the ability of poxviruses to replicate in a

wide range of cell types.

To investigate this complex pathogen-host relationship further,

a RNAi screen of druggable host targets was carried out to analyse
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the effect of cellular protein depletion on VACV replication, using

a multi-cycle VACV infection assay that monitors all stages of

virus replication including virus spread. The screen identified a

range of previously identified HFs, but also novel HFs and

pathways influencing VACV infection that may facilitate the

development of broadly effective anti-viral strategies and the

optimisation of poxviral-based vaccine vectors.

Materials and Methods

RNA Interference Screen
A schematic diagram of the workflow used in the RNAi screen is

shown in Figure 1. siRNA SMARTpools (4 siRNAs per gene,

Dharmacon) were diluted to 0.3 mM and dispensed in 10 ml

volumes using a Rapidplate384 liquid handler (Qiagen) into eight

black 384-well plates (Corning). These were stored at 280uC until

needed (maximum 48 h). On the day of transfection, plates were

thawed and 10 ml transfection reagent (Dharmafect 1, Dharma-

con) diluted in Hank’s buffered saline solution (HBSS, Thermo-

Fisher) was added to each well containing siRNA using a

Multidrop 384 (ThermoFisher), to give a final transfection reagent

concentration of 0.1%. Plates were incubated for 20 min at room

temperature to allow formation of transfection complexes. During

complex formation, low-passage (p20–22) HeLa cells (ECACC)

from approximately 50% confluent flasks were washed in PBS and

trypsinised in Trypsin-EDTA (Lonza) before diluting in phenol

red-free, antibiotic-free transfection medium (DMEM/F-12 1:1

with 5% FCS, 15 mM Hepes and L-glu; Gibco). 36103 cells in a

volume of 40 ml were added to each well using the Multidrop 384.

Plates were incubated for 48 h at 37uC in a humidified incubator

with 5% CO2 before infection. To infect, media was removed

from plates by inversion, and 15 ml media (DMEM +4.5 g/L D-

glucose, L-glu and pyruvate with 2.5% FCS and penicillin-

streptomycin) or 15 ml media containing VACV strain WR with

eGFP tagged A5 protein [16] diluted to MOI 0.05, was added

using the Multidrop 384. Plates were incubated at 37uC for 1 h

before 50 ml of media was added to each well, the plates inverted

to remove the media and virus, and a final volume of 50 ml of

media added to the plates before they were returned to the

incubator. After 48 h the plates were inverted to remove the media

and 50 ml of 10% buffered formal saline added to fix the cells.

Fluorescence levels were measured using a POLARstar OPTIMA

plate reader (BMG Labtech). Data from eight replicates was used

for analysis. Background intensity correction was carried out by

subtracting the median value of uninfected wells and the data was

normalised using the robust Z score method [17], and corrected

for the number of cells in each well. The correction for the number

of cells in each well was carried out by estimating the linear

correlation coefficient between the level of fluorescence (pheno-

type score) and the number of cells (toxicity score) using least

squares optimization. This coefficient was used to linearly adjust

the phenotype scores.

High Content Screening
One replicate of the screen was imaged by a high content

screening system. The buffered formal saline was removed from

the cells by inverting the plates, and cells were washed in 50 ml of

room temperature PBS before permeabilising for 15 min at room

temperature in 30 ml of 0.1% tritonX-100 diluted in PBS. Plates

were inverted and 50 ml of a 1:50 dilution of AlexaFluor-647

phalloidin (Invitrogen Molecular Probes) diluted in PBS + 1%

BSA was added and incubated for 45 min in the dark. The

phalloidin was removed by inversion and 50 ml of DAPI (1 mg/ml)

diluted in PBS was added and left on. Cells were analysed by

automated microscopy using an OPERA high content screening

system (Perkin Elmer) and Acapella High Content Imaging and

Analysis software.

Definition of Toxic siRNA Pools
To identify siRNA SMARTpools which exerted significantly

toxic effects the number of cells in each well was counted and

converted to a z-score. A z-score is equivalent to the number of

standard deviations away from the mean. siRNA treatments that

reduced the cell number by two or more standard deviations

below the population mean (z-score of 22 or less) were removed

from further analysis. A z-score of 22 was equivalent to 250 cells,

compared to a population mean of 455.

qPCR Confirmation of siRNA Knockdown
Selected siRNA SMARTpools were diluted to 0.3 mM in 1x

siRNA buffer and dispensed in triplicate in 96-well plates

(Corning). To this, 10 ml Dharmafect 1 diluted in DMEM to give

a final concentration of 0.15% was added using the Multidrop

384. Following a 20 min incubation to enable complex formation,

0.46104 Hela cells in 80 ml transfection media were added and

plates were transferred to a 37uC humidified incubator with 5%

CO2. After 48 h, medium was removed and cells rinsed in PBS

before lysing in 100 ml TRIZOL (Invitrogen). Triplicate wells were

combined, and RNA extracted by PureLink (TM) RNA Mini Kit

(Life Technologies). mRNA levels were determined by either

TaqMan qPCR with gene-specific primers and probes from the

Universal Probe Library (Roche), or by SYBR green qPCR, using

the appropriate one-step RT-qPCR kits (Thermofisher). Expres-

sion levels were normalised to the housekeeping cellular gene

hypoxanthine phosphoribosyltransferase 1 (HPRT) and calibrated

to mock-transfected cells. qPCR was carried out in duplicate for

each sample, and normalised expression levels averaged.

Phenotype Validation by siRNA Deconvolution
The phenotype observed in the primary screen was confirmed

for a subset of candidate genes with deconvoluted siRNA

SMARTpools. The four individual siRNAs targeting different

regions of each gene were diluted to 0.3 mM in 1x siRNA buffer

and dispensed to 96-well plates in triplicate. Transfection and,

48 h later, infection with VACV-A5eGFP was carried out as

described above. At 0 and 48 h post infection fluorescence was

measured using a Synergy HT plate reader (BioTek). The

experiment was carried out three times to produce a dataset of

three biological replicates each containing three technical repli-

cates. The data were analysed using mixed models [18] fitting

gene, time-point gene*time interaction and first time-point value

as fixed effects. Values observed at the first time-point were fitted

as a ‘baseline covariate’ in order to increase the sensitivity of the

analysis. The repeated experiments were fitted as random effects,

causing the variation in results between the repeated experiments

to be taken into account when testing statistical significance.

Differences between the amount of fluorescence present in wells

treated with each siRNA and wells treated with a non-specific

siRNA (targeting the HSV-1 gene VP16) were tested within the

mixed models using t-tests. Groups of genes were tested on

separate plates and each of the groups were analysed using a

separate mixed model. A phenotype was considered confirmed if

two or more of the four siRNAs resulted in a p-value of 0.05 or

less.

Host Factors Influencing Vaccinia virus Replication
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Plaque Assay
Six wells of a 96 well plate were transfected with a siRNA

SMARTpool and, 48 h later, infected with VACV-A5eGFP as

described above. At 24, 36 and 48 h post infection cells were

scraped into the overlying media, collected and then frozen and

thawed three times and sonicated for 30 seconds (Misonix

sonicator 3000). The resultant lysate was titrated on BS-C-1 cell

monolayers and virus titre quantified as plaque forming units

(PFU) per ml [19].

Gene Set Overrepresentation Analysis
Enrichment analysis was performed with respect to pathway-

and GO-based gene sets defined in MSigDB [20], as well as with

respect to gene sets derived from protein complexes curated in the

CORUM [21] and PIN [22] databases. Specifically, the genes

were sorted based on the screening data, and then the propensity

of gene sets towards pro- or anti-viral activities were sought out

using rank-sum tests with multiple testing [23].

Comparison with Cellular Expression Data
The three gene expression data sets used in the analyses were

data set A (GSE11238, a microarray of VACV infected HeLa cells

(http://www.be-md.ncbi.nlm.nih.gov/projects/geo/query/acc.

cgi?acc = GSE11238)), data set B (GSE24125, a microarray of

macrophages, monocytes and fibroblasts [24]), and data set C

(SRA017695, a RNA-seq based analysis of gene expression in

Figure 1. Identification of HFs for Vaccinia virus replication by RNA interference screen. (a) Schematic of the experimental workflow used
to screen the replication of VACV with the druggable RNAi library. (b) Comparison of the level of fluorescence of the control siRNAs used in the
primary screen. Wells were transfected with siRNA targeting PRK-AB1 and eGFP (known to downregulate VACV-A5eGFP growth), two negative
controls (mock transfection and RSCF siRNA) and two non-specific siRNAs (targeting VP16 or VP11/12 from Herpes simplex virus type 1). Error bars
indicate the standard error of the mean. (c) Correlation between level of fluorescence and amount of virus present. HeLa cells were mock transfected
or transfected with siRNA which is not processed by the RISC machinery (RSCF) or which knocks down a strong VACV pro-viral factor (FBXL11). After
48 h cells were infected with VACV-A5eGFP at low multiplicity of infection (MOI 0.05). At 24, 36 and 48 h post infection fluorescence was measured (y
axis) before the cells were collected for titration using a plaque assay (x axis). Correlation (Pearson product moment correlation coefficient) between
the two datasets = 0.86. (d) Plot of sorted z-scores representing the level of fluorescence associated with each of the 6 719 siRNA SMARTpools in the
screen (average of 8 replicates). siRNA pools targeting genes of particular interest are marked.
doi:10.1371/journal.pone.0098431.g001

Host Factors Influencing Vaccinia virus Replication
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each condition (i.e. a timepoint in a data set) and then a

‘‘summerisation q-value’’ qg was calculated which reflects how

unexpectedly high the ranks are (using order statistics; in particular

the rank of the third 4-quantile). Therefore qg quantifies how

unexpectedly often g is among the most strongly regulated genes

(up or down).

Identification of Vaccinia virus Host Factors by RNA
Interference Screen

To identify HFs that influence VACV replication we used a

druggable genome small interfering RNA (siRNA) library

(Dharmacon) in a high-throughput screen. This library targets

genes that are considered potential candidates for therapeutics

(Figure 1a). Briefly, SMARTpool siRNAs (a mix of 4 siRNAs per

gene) targeting 6 719 genes were distributed into 384-well plates

and reverse-transfected into HeLa cells. Cells were infected 48 h

post-transfection at a low multiplicity of infection (MOI 0.05) with

the VACV strain VACV-A5eGFP. After 48 h (thus allowing

multiple complete virus replication cycles), eGFP fluorescence was

quantified as a measure of infection and compared to controls in

order to determine the effect of individual gene depletion on

VACV replication. Two positive siRNA controls known to

downregulate VACV-A5eGFP growth (targeting PRK-AB1 and

eGFP), two negative controls (mock transfection and RSCF siRNA

which is not processed by the RISC machinery) and two non-

specific siRNAs (targeting VP16 or VP11/12 from Herpes simplex

virus type 1) were included in duplicate in each plate (Figure 1b).

To confirm that the measurement of virus-expressed fluorescence

was a reliable marker of viral replication, fluorescence was

correlated to virus-titre, as determined by standard plaque assay,

over a range of time-points post-infection after treatment with

control or inhibitory siRNAs (Figure 1c). This resulted in a

Pearson product moment correlation coefficient of 0.86, confirm-

ing that fluorescence was a reliable determinant of virus

replication. The entire druggable screen was repeated four times

in duplicate to generate a robust primary data set of eight

replicates. Pairwise agreement comparing the levels of fluores-

cence across the eight replicates revealed good reproducibility

(median Spearman’s coefficient 0.55). One replicate of the VACV-

infected cells was analysed by automated microscopy using an

OPERA high content screening system and Acapella High

Content Imaging and Analysis software to quantify the number

of cells present in each well. A total of 403 siRNA pools (6% of the

total) were associated with a significant reduction in cell number

(Figure 1a). These were removed from further analysis and are

listed in Table S1 in File S1.

The fluorescence data from the remaining wells in the primary

screen was normalised platewise using the robust z-score method

[17]. A summary value was calculated for each gene by taking the

mean across the replicates, and these values were converted to z-

scores which were corrected for the number of cells in the well to

produce the level of fluorescence per cell for each siRNA. A

negative z-score indicated a reduction in VACV replication and a

positive z-score indicated an increase in VACV replication

(Figure 1d). The two positive controls (siRNA targeting PRKAB1

and eGFP) produced strongly negative z-scores as expected. The

median level of fluorescence (z-score of 0) was very close to the

level of fluorescence seen in wells transfected with the non-specific

siRNA (negative control), indicating that roughly half of the

siRNA pools caused an increase in fluorescence and half caused a

decrease. A ‘‘hit’’ was defined as a siRNA pool which generated a

z-score of $2 or #–2. Using these criteria, a hitlist of 302 HFs

(4.5% of the total) was generated, consisting of 153 pro-viral HFs

which inhibited replication upon depletion and 149 anti-viral HFs

which increased replication upon depletion (Table S2 in File
S1).

Validation of Primary RNAi Screen Data
To confirm the effect of the siRNA SMARTpools on mRNA

levels, a subset of SMARTpools were transfected into HeLa cells

and after 48 h, total RNA extracted and subjected to a

quantitative RT-PCR to determine the level of mRNA of the

targeted gene. 62 genes out of 80 tested (78%) had their transcript

level reduced by 50% or more, indicating that the majority of the

SMARTpools functioned as expected (Table S3 in File S1).

To confirm the effect of gene depletion on VACV replication a

subset of HFs, chosen on the basis of their potential for further

investigation, were tested using the four individual, deconvoluted

siRNAs of each SMARTpool. The level of viral fluorescence was

compared to that seen with non-specific siRNA and a statistically

significant reduction or increase in fluorescence (p,0.05) induced

by at least 2 individual siRNAs from the original SMARTpool was

required for confirmation of the hit. Overall 38 (53%) out of 72

candidate genes tested by this method were successfully confirmed

(Table S4 in File S1). This level of validation is commensurate

with similar RNAi screens of viral replication which have reported

confirmation of between 38% and 83% of primary screen hits

[26–33].

Within our deconvoluted dataset the validation level of putative

pro-viral HFs was notably higher than that for the anti-viral HFs.

Only 30% of the anti-viral hits (7/24) were successfully validated

in comparison to 69% of the pro-viral hits (24/35) and 54% of the

siRNA pools with no effect in the primary screen (7/13). One

potential reason for the lower validation rate of the anti-viral hits

might be that the dynamic range of the virus replication assay is

such that inhibitory effects are more easily demonstrated, as under

normal replication conditions virtually all cells in the well became

infected by 48 h post infection (data not shown) suggesting the

system reached near saturation. To examine this further, the effect

of selected siRNAs on traditional viral growth curves was tested

and correlated with their perturbation of fluorescence in the

primary screen. HeLa cells were transfected with each one of 6

siRNA SMARTpools (upregulatory MAP3K14, control VP16,

and downregulatory TRIP, PPAP2A, VPS52 and CCT7) and

infected with VACV-A5eGFP at an MOI of 0.05 after 48 h.

Analysis of virus titre at 12 h intervals by plaque assay found the

endpoint titres correlated very closely with the z-score obtained

from the primary RNAi screen (Figure 2), further validating the

robustness of the primary screen. Notably, however, whilst the

inhibitory siRNAs decreased the maximum virus titre by between

13- (CCT7) and 5-fold (VPS52) the siRNA treatment directed

against a candidate antiviral HF (MAP3K14) only increased peak

virus titre by 3-fold. Thus the response of the system is more suited

to detecting inhibitory perturbation, with relatively reduced

sensitivity for detection of individual anti-viral HFs.

The list of 302 individual HFs was analysed for genes already

known to influence VACV replication. Numerous examples were

found including clathrin and proteins involved in Golgi vesicular

trafficking, both of which are required for the production of

enveloped VACV forms [34,35], as well as multiple components of

the AMPK complex which has been shown to aid VACV entry

[36]. In addition the signalling pathway regulating protein TRAF2

was identified in the screen as a pro-viral hit; further work

demonstrated that it promoted rapid VACV entry [37]. The

identification of known host factors for VACV and our follow-up

Host Factors Influencing Vaccinia virus Replication
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identification of the role of TRAF2 in VACV replication supports

the reliability and significance of this RNAi screen dataset.

Overall, eight replicates of a genome-wide RNAi screen of

multiple VACV replication cycles identified 302 cellular genes,

consisting of 153 HFs that positively support VACV replication

and 149 HF with anti-viral effects.

Host Factors Common to other VACV Screens
To prioritise investigations of the 302 potential VACV HFs, the

candidate genes were compared to the hit lists of other viral RNAi

screens, including two recently published VACV screens [32,38].

The methodology in the previously published VACV screens

varied considerably; Mercer et al [32] measured the growth of a

thymidine-kinase-deficient VACV (strain Western Reserve) after

only 8 h of infection, thereby identifying cellular proteins involved

in the initial stages of virus replication but excluding analysis of

viral spread. They reported 188 pro-viral HF but no anti-viral

HFs. A second screen by Sivan et al [38] used the VACV strain

IHD-J (which has a point mutation that accelerates the release of

progeny virions from the cell surface) to identify genes which

influenced viral replication after 18 h of infection, thus measuring

the entire replication cycle with emphasis on viral spread. They

reported 576 pro-viral and 530 anti-viral HFs. The overlap

between the hit lists reported by the three VACV RNAi studies

(Mercer et al, Sivan et al, and this study) is depicted in Figure 3a
and b and the HFs common to two studies are listed in Table S5
in File S1. The number of overlapping hits between two of the

screens ranged from 3 to 13 and no HFs were common to all three

VACV studies. A small number of common hits between siRNA

screens of the same virus is a frequent finding [39,40] and, given

the variation in methodology between the three VACV screens

(including viral strain, infection time, and data analysis), is not

surprising. However, comparison of the enriched functions and

pathways identified in each of the three VACV screens revealed

marked similarities (discussed below), demonstrating the power of

comparative screening approaches to identify significant cellular

pathways involved in virus replication.

Host Factors Common with other Viruses
Genome-scale siRNA screens have been carried out for many

viruses other than VACV, including HIV-1 [41–43], West Nile

Virus (WNV) [44], Hepatitis C Virus (HCV) [30,45], Vesicular

Stomatitis Virus (VSV) [29], Borna Disease Virus [46], enterovi-

ruses [27], Dengue virus [28], herpes simplex virus 1 (HSV-1) [33]

and influenza A virus [26,31,47]. Host factors common to two or

more of these screens could represent broadly acting cellular

proteins with a generalised effect on viral replication. A

Figure 2. Validation of Vaccinia virus HFs. (a) Validation of primary
screen hits using plaque assays. siRNA SMARTpools targeting five genes
identified in the primary RNAi screen as modulating VACV growth (one
anti-viral factor MAP3K14 and four pro-viral factors TRIP, PPAP2A, VPS52
and CCT7), and one non-specific SMARTpool (VP16) were transfected
into HeLa cells and, after 48 h, infected at low MOI (0.05) with VACV-
A5eGFP. At 12 h intervals, cells were collected and the amount of virus
present calculated using a plaque assay. Results obtained in the primary
RNAi screen are plotted on the right hand axis for comparison.
doi:10.1371/journal.pone.0098431.g002

Figure 3. Identification of anti and pro-viral HFs common to
multiple RNAi viral screens. Venn diagram showing the (a) pro-viral
and (b) anti-viral hits common to at least two VACV RNAi screens and (c)
hits common to the VACV screen reported in this study and three
published influenza A RNAi screens with a total of 662 hits [26,31,47]
and three published HIV RNAi screens with a total of 826 hits [41–43].
doi:10.1371/journal.pone.0098431.g003

Host Factors Influencing Vaccinia virus Replication
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comparison of the VACV HFs identified in this screen with those

identified in other viral screens found a small overlap with WNV,

VSV, Borna Disease virus and Dengue virus, whilst 21 VACV

HFs were shared with HSV-1, 17 with influenza A virus and 13

with HIV-1 (Figure 3c). A list of overlapping genes can be found

in Table S6 in File S1.

Amongst the factors in common, the nucleocytoplasmic

transport factor NUP98 was identified as a proviral hit in the

VACV screen reported here as well as HIV, HSV-1 and influenza

A virus screens [26,31,33,42]. It is located at both the cytoplasmic

and the nuclear faces of the central channel of the nuclear pore

complex (NPC) [48], is involved in Rev-dependent RNA export

during HIV infection [49], and has been shown to play both pro-

and anti-viral functions during influenza A virus infection

[31,50,51]. NUP98 was a somewhat unexpected proviral hit in

our screen since poxvirus replication and assembly occur in the

cytoplasm. However the two VACV RNAi screens published

recently also identified a number of nuclear pore proteins as pro-

viral, with one screen demonstrating that knockdown of NUP62

strongly inhibited viral morphogenesis [38]. The number of

nuclear pore proteins now identified as pro-viral HFs strongly

suggests poxviruses require functional nuclear membrane trans-

port for efficient replication.

Another HF that affects both VACV and influenza A virus

replication is MAP2K3 (also known as MKK3 and MEK3), which

activates the p38 MAPK signalling pathway and is involved in low

pH-dependent entry of influenza virus and VSV [31,47]. VACV

also has a low pH-dependent entry mechanism [52] which may be

similarly reliant on MAP2K3. Alternatively, it may be required to

activate the p38 MAPK pathway to promote cell survival post

infection [14].

In contrast, IFITMs (interferon inducible transmembrane

proteins) have been identified in functional genomic screens as

mediating resistance to influenza A virus, Dengue virus and West

Nile virus infection in vitro and in vivo [26,53] as well as Marburg

and Ebola viruses, SARS-coronavirus [54] and HIV [55]. These

proteins prevent entry of viruses at the plasma membrane,

endosomes and lysosomes [56], however none had an effect on

VACV replication in our screen, suggesting VACV is resistant to

the repressive effect of this protein family (Figure 1d).

Transcriptional Modulation of Vaccinia virus Host Factors
To determine whether the expression of HFs identified by

RNAi is modulated by VACV, the RNAi hit list was compared to

previously published transcriptional profiling data sets performed

on cells infected with VACV. Three available expression profiling

data sets (designated A, B and C, see Materials and Methods for

sources) which used different cells, virus isolates and time points

were compiled and compared. Correlation was mainly limited to

intra-data set measurements (i.e. different time points or cell lines

within a data set) with some examples of agreement between data

sets A and C, both of which used HeLa cells. To test whether there

was a general propensity of HFs to be differentially expressed in

virus-infected cells the distribution of the 302 RNAi hits was

compared to that of the whole RNAi screen in these three

transcriptional profiling data sets. No significant tendency of pro-

viral HFs to be up-regulated or anti-viral HFs to be downregulated

was detected (data not shown). Subsequently the expression of

individual HFs was examined using the transcriptional profiling

data of the two HeLa-based studies (A and C). This revealed

specific examples of HFs which are differentially expressed in

virus-infected cells (Figure 4). Four pro-viral HFs (RUNX1,

eIF3C, HBEGF, and ADM) were significantly upregulated in

VACV-infected HeLa cells (q,0.05), suggesting that VACV might

promote expression of these proteins to assist viral replication and

spread. RUNX1 is a subunit of the transcription factor CBF which

regulates critical processes in both myeloid and lymphatic

haematopoiesis. Chromosomal translocations and mutations of

RUNX1 are among the most frequent genomic abnormalities in

different types of leukaemia [57]. Furthermore, a genome-wide

association study found a genetic polymorphism in RUNX1 to be

associated with the serological response to VACV vaccination

(Dryvax vaccine, Wyeth Laboratories) in African-Americans. This

suggests that the RUNX1 polymorphism may influence replication

and viral gene expression of the live-attenuated vaccine in vivo

which causes differences in the strength of the adaptive immune

response [58], a hypothesis supported by our identification of

RUNX1 as a pro-viral VACV HF.

In addition to upregulated pro-viral HFs, opposite examples

were also identified, with two anti-viral HFs (ANGPTL4, RBAK)

significantly upregulated and one pro-viral HF (SAP18) downreg-

ulated in VACV-infected cells. This lack of correlation between

functional HFs and gene expression at the transcriptional level

serves to underscore the complexity of virus-host interactions and

highlights the need for further follow-up studies.

Functional and Pathway Analyses of Vaccinia Virus Host
Factors

To assess further the role of candidate HFs and associated

functions and pathways in VACV replication, an overrepresenta-

tion analysis of the complete VACV RNAi data set was performed

with respect to pathway- (Figure 5a) and GO- (Figure 5b) based

gene sets as defined in the MSigDB database, as well as from

curated protein complexes defined in the CORUM [21] and PIN

[22] databases (Figure 5c). Translation was the most strongly

enriched theme in all these analyses, particularly the eIF3

complex. Poxviruses are known to utilise the host translation

machinery for production of viral proteins therefore the enrich-

ment of translation as a pro-viral theme is a validation of the

screening method. The cellular translation machinery has been

highlighted in other viral RNAi screens as essential for VSV [29]

and hepatitis C virus [45] and HSV-1 [33].

More interestingly, transcriptional initiation and general RNA

polymerase II transcription factor activity were identified in the

functional analysis of the RNAi screen as significantly over-

represented anti-viral GO-based gene sets (Figure 5b). Sevin et al

[38] also reported that interference with DNA-dependent RNA

polymerase II pathways enhanced VACV spread. Our work

identified individual anti-viral HFs involved in transcription such

as MAZ (an inflammatory responsive transcription factor also

known as SAF1), and the transcription factor E2F2. Inspection of

individual confocal images taken at 48 h pi of cells depleted of

these factors showed notably brighter accumulations of eGFP-

labelled virus, in line with the positive z-scores from the overall

primary screen (Figure 6a). Orthopoxvirus infection results in a

rapid shut down of cellular transcription, with a marked reduction

in the amount of host mRNA present as early as 2 h post infection

[25,59,60]. This effect is believed to result from cessation of host

mRNA synthesis and degradation of cellular mRNA transcripts.

The viral proteins involved in this shut-off of host cell transcription

have not been identified, although D9 and D10 have been

implicated [61,62]. In contrast to viral translation which is

dependent on host proteins, VACV encodes its own transcription

enzymes so is largely unaffected by a general repression of cellular

transcription [63]. Therefore VACV-induced downregulation of

host transcription prevents the host cell from transcribing anti-

viral, pro-inflammatory gene programmes, such as the NF-kB

cascade, while having a minimal negative effect on viral
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Figure 4. Transcriptional modulation of Vaccinia virus HFs. Plot of seven VACV HFs identified in the RNAi screen that are also strongly
transcriptionally regulated in VACV infected cells. The x-axis represents the level of fluorescence in the RNAi screen (viral replication) expressed as a z-
score with pro-viral genes to the left and anti-viral genes to the right. The y-axis represents the relative expression of the seven genes in VACV
infected cells.
doi:10.1371/journal.pone.0098431.g004

Figure 5. Functional characterization of Vaccinia virus HFs. Gene sets identified by over-representation analysis. Gene sets were identified
using (a) pathway- and (b) GO-based gene sets as defined in the MSigDB database, or (c) protein complexes defined in the CORUM [21] and PIN [22]
databases. All significantly overrepresented gene sets (–log10(q-value).0.1) are shown. Each row shows the ranks of genes from a particular gene set
that were present in the RNAi screen. Each tick mark denotes the place of a particular gene from that gene set, placed at the appropriate position in
the distribution. Genes were sorted from left to right from most pro-viral to most anti-viral. The red and blue colours of the ticks are used for visual
contrast. A green diamond is used to denote the median rank of the genes in the set.
doi:10.1371/journal.pone.0098431.g005
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transcription. Whilst VACV has developed mechanisms to shut off

host transcription, these data show that virus replication is

improved when transcription is impaired prior to infection. Thus,

despite the efforts of the virus to shut off host transcription, some

anti-viral effect of this pathway persists in VACV infected cells.

Two members of the septin protein family (septin 1 and MSF/

septin 9) were identified in the RNAi screen as anti-viral HFs

(Figure 6b). MSF/septin 9 co-purifies from cells with three other

septin proteins (NEDD5/septin 2, CDC10/septin 7 and septin

11), suggesting they form a functional complex [64]. These were

therefore grouped in the pathway analysis, resulting in a significant

Figure 6. Analysis of pro- and anti-viral cellular pathways. Left hand panels show selected fluorescence images of infected HeLa cells
transfected with the indicated siRNAs at 48h post infection. Blue = DAPI (DNA stain), red = phalloidin (actin cytoskeleton) and green = VACV-A5eGFP.
The z-score of each siRNA is indicated in the bottom right of each image. The right hand panels show the plot of sorted z-scores from the primary
screen with the position of genes of interest marked. (a) Transcriptional proteins inhibitory for VACV replication (b) Anti-viral function of septins (c)
Genome maintenance and DNA repair proteins inhibitory for VACV replication (d) The AMP-activated kinase complex is involved in VACV replication.
doi:10.1371/journal.pone.0098431.g006
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over representation (q = 0.1) (Figure 5c). Consistent with this,

depletion of NEDD5/septin 2, septin 7 and septin 11 all increased

virus replication although not to the stringent cut-off used here to

define a ‘hit’ (Figure 6b). Deconvoluted siRNAs targeting septin

11 mRNA confirmed the enhancement of virus replication,

although results with the other family members were more

variable (Table S4 in File S1). Septin 11 has also been identified

as a proviral hit in a recently reported VACV siRNA screen [38].

Septins are conserved GTP-binding proteins which act as dynamic

scaffolds for recruitment of other proteins. They are involved in

actin and microtubule function, cytokinesis, cell movement and

vesicle trafficking [65]. Interestingly, they can be recruited

together with autophagic proteins to ‘‘cage’’ Shigella flexneri in the

cytosol of infected cells, restricting bacterial dissemination [66].

The cage assembly is linked with actin polymerisation activity of S.

flexneri, suggesting that a similar mechanism may be employed by

the host cell to ‘‘cage’’ VACV virions (which activate actin

polymerisation both early and late in the replication cycle [67,68])

and thus invoke an anti-viral effect.

Two groups of genes involved in DNA replication and repair

were highlighted in the pathway analysis as having anti-viral

properties (Figure 5c). The PCNA-MutSa-MutLa-DNA complex

(PCNA, MSH2, PMS2, and MLH1) and the BRCA1-associated

genome surveillance complex (RFC4, BRCA1, BLM, RFC1,

MSH2 and MLH1) both promoted virus replication when

individual group members were downregulated (Figure 6c).

These pathways are both involved in DNA damage signalling and

repair [69,70], a cellular process which is targeted by numerous

viruses [71]. Specifically, DNA damage signalling pathways act as

a host defence mechanism in poxvirus infection, detecting and

responding to foreign poxviral DNA and inducing intrinsic

apoptosis [72]. The identification of the PCNA and BRCA1 gene

sets as strongly anti-poxviral HFs in the RNAi screen suggests they

are a part of this, or a similar, defence mechanism.

The AMP-activated kinase complex (AMPK) is a key regulator

of energy metabolism. It is activated by a reduction in ATP which

prompts phosphorylation of many target proteins, resulting in the

activation of catabolic pathways and inhibition of anabolic

pathways [73]. It has also been linked to regulation of the actin

cytoskeleton [74]. AMPK is a heterotrimer comprising a catalytic

a subunit and regulatory b and c subunits. In mammals each

subunit has several isoforms (PRKAA1, PRKAA2, PRKAB1,

PRKAB2, PRKAG1, PRKAG2, and PRKAG3) [73]. The

druggable RNAi screen reported here screened all seven genes

and identified three (PRKAA2, PRKAB1, and PRKAB2) as

promoters of VACV replication whose depletion led to fewer and

dimmer accumulations of cytoplasmic eGFP (Figure 6d). This

result is in broad agreement with a recently published RNAi

screen of 440 cellular kinases and phosphatases in a non-

permissive Drosophila cell model of VACV infection [36], which

identified seven hits including three AMPK subunits.

Conclusion

This study performed a loss of function analysis of HFs involved

in VACV infection using RNAi. Previously identified host

pathways and protein complexes which aid VACV replication,

such as translation and the AMPK complex proteins, were

highlighted in the RNAi screen. In addition, however, a range of

novel host pathways and proteins were identified that influenced

VACV infection, such as the DNA damage and repair pathways,

the septin family of proteins, MAP2K3 and NUP98. As many of

the genes targeted in this RNAi screen have a known drug

inhibitor, this work yields a list of HFs that can potentially be

targeted by novel therapeutics.

Supporting Information

File S1 Supporting Tables. Table S1, List of 403 cytotoxic

siRNAs which caused significant cell death. Table S2, The 302

cellular genes identified by RNAi as having a significant effect on

VACV replication. Table S3, qPCR confirmation of gene

depletion by siRNA SMARTpools. Table S4, Deconvolution of

siRNA SMARTpools. Table S5, Overlap of HFs identified in

three different VACV RNAi screens. Table S6, Overlap of HFs

between VACV and other viral RNAi screens.
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