18 research outputs found

    Genetically predicted telomere length and its relationship with neurodegenerative diseases and life expectancy

    Full text link
    Telomere length (TL) is a biomarker of biological aging. Shorter telomeres have been associated with mortality and increased rates of age-related diseases. However, observational studies are unable to conclude whether TL is causally associated with those outcomes. Mendelian randomization (MR) was developed for assessing causality using genetic variants in epidemiological research. The objective of this study was to test the potential causal role of TL in neurodegenerative disorders and life expectancy through MR analysis. Summary level data were extracted from the most recent genome-wide association studies for TL, Alzheimer's disease (AD), Parkinson's disease, Frontotemporal dementia, Amyotrophic Lateral Sclerosis, Progressive Supranuclear Palsy and life expectancy. MR estimates revealed that longer telomeres inferred a protective effect on risk of AD (OR = 0.964; adjusted p-value = 0.039). Moreover, longer telomeres were significantly associated with increased life expectancy (beta(IVW) = 0.011; adjusted p-value = 0.039). Sensitivity analyses suggested evidence for directional pleiotropy in AD analyses. Our results showed that genetically predicted longer TL may increase life expectancy and play a protective causal effect on AD. We did not observe significant causal relationships between longer TL and other neurodegenerative diseases. This suggests that the involvement of TL on specific biological mechanisms might differ between AD and life expectancy, with respect to that in other neurodegenerative diseases. Moreover, the presence of pleiotropy may reflect the complex interplay between TL homeostasis and AD pathophysiology. Further observational studies are needed to confirm these results. (C) 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    The mRNA-1273 Vaccine Induces Cross-Variant Antibody Responses to SARS-CoV-2 With Distinct Profiles in Individuals With or Without Pre-Existing Immunity

    Get PDF
    mRNA-based vaccines effectively induce protective neutralizing antibodies against SARS-CoV-2, the etiological agent of COVID-19. Yet, the kinetics and compositional patterns of vaccine-induced antibody responses to the original strain and emerging variants of concern remain largely unknown. Here we characterized serum antibody classes and subclasses targeting the spike receptor-binding domain of SARS-CoV-2 wild type and α, β, γ and δ variants in a longitudinal cohort of SARS-CoV-2 naïve and COVID-19 recovered individuals receiving the mRNA-1273 vaccine. We found that mRNA-1273 vaccine recipients developed a SARS-CoV-2-specific antibody response with a subclass profile comparable to that induced by natural infection. Importantly, these antibody responses targeted both wild type SARS-CoV-2 as well as its α, β, γ and δ variants. Following primary vaccination, individuals with pre-existing immunity showed higher induction of all antibodies but IgG3 compared to SARS-CoV-2-naïve subjects. Unlike naïve individuals, COVID-19 recovered subjects did not mount a recall antibody response upon the second vaccine dose. In these individuals, secondary immunization resulted in a slight reduction of IgG1 against the receptor-binding domain of β and γ variants. Despite the lack of recall humoral response, vaccinees with pre-existing immunity still showed higher titers of IgG1 and IgA to all variants analyzed compared to fully vaccinated naïve individuals. Our findings indicate that mRNA-1273 vaccine triggered cross-variant antibody responses with distinct profiles in vaccinees with or without pre-existing immunity and suggest that individuals with prior history of SARS-CoV-2 infection may not benefit from the second mRNA vaccine dose with the current standard regimen

    Genetically predicted telomere length and Alzheimer’s disease endophenotypes: a Mendelian randomization study

    Get PDF
    Telomere length (TL) is associated with biological aging, consequently influencing the risk of age-related diseases such as Alzheimer's disease (AD). We aimed to evaluate the potential causal role of TL in AD endophenotypes (i.e., cognitive performance, N = 2233; brain age and AD-related signatures, N = 1134; and cerebrospinal fluid biomarkers (CSF) of AD and neurodegeneration, N = 304) through a Mendelian randomization (MR) analysis. Our analysis was conducted in the context of the ALFA (ALzheimer and FAmilies) study, a population of cognitively healthy individuals at risk of AD. A total of 20 single nucleotide polymorphisms associated with TL were used to determine the effect of TL on AD endophenotypes. Analyses were adjusted by age, sex, and years of education. Stratified analyses by APOE-epsilon 4 status and polygenic risk score of AD were conducted. MR analysis revealed significant associations between genetically predicted longer TL and lower levels of CSF A beta and higher levels of CSF NfL only in APOE-epsilon 4 non-carriers. Moreover, inheriting longer TL was associated with greater cortical thickness in age and AD-related brain signatures and lower levels of CSF p-tau among individuals at a high genetic predisposition to AD. Further observational analyses are warranted to better understand these associations

    Management of acute diverticulitis with pericolic free gas (ADIFAS). an international multicenter observational study

    Get PDF
    Background: There are no specific recommendations regarding the optimal management of this group of patients. The World Society of Emergency Surgery suggested a nonoperative strategy with antibiotic therapy, but this was a weak recommendation. This study aims to identify the optimal management of patients with acute diverticulitis (AD) presenting with pericolic free air with or without pericolic fluid. Methods: A multicenter, prospective, international study of patients diagnosed with AD and pericolic-free air with or without pericolic free fluid at a computed tomography (CT) scan between May 2020 and June 2021 was included. Patients were excluded if they had intra-abdominal distant free air, an abscess, generalized peritonitis, or less than a 1-year follow-up. The primary outcome was the rate of failure of nonoperative management within the index admission. Secondary outcomes included the rate of failure of nonoperative management within the first year and risk factors for failure. Results: A total of 810 patients were recruited across 69 European and South American centers; 744 patients (92%) were treated nonoperatively, and 66 (8%) underwent immediate surgery. Baseline characteristics were similar between groups. Hinchey II-IV on diagnostic imaging was the only independent risk factor for surgical intervention during index admission (odds ratios: 12.5, 95% CI: 2.4-64, P =0.003). Among patients treated nonoperatively, at index admission, 697 (94%) patients were discharged without any complications, 35 (4.7%) required emergency surgery, and 12 (1.6%) percutaneous drainage. Free pericolic fluid on CT scan was associated with a higher risk of failure of nonoperative management (odds ratios: 4.9, 95% CI: 1.2-19.9, P =0.023), with 88% of success compared to 96% without free fluid ( P <0.001). The rate of treatment failure with nonoperative management during the first year of follow-up was 16.5%. Conclusion: Patients with AD presenting with pericolic free gas can be successfully managed nonoperatively in the vast majority of cases. Patients with both free pericolic gas and free pericolic fluid on a CT scan are at a higher risk of failing nonoperative management and require closer observation

    The Somosaguas palaeontology project: an envision of Nieves López Martínez for linking science and society

    Get PDF
    The palaeontological site of Somosaguas is located in Pozuelo de Alarcón, to the west of the city of Madrid (Spain), and contains fossils of Miocene age corresponding to 24 species of micro- and macromammals as well as other vertebrates. The Somosaguas Palaeontology Project is focused on this site and was coordinated by Nieves López Martínez between 1998 and 2010 as an example of management of a palaeontological site by university students and young researchers. This project began with fi eld seasons for students in natural sciences grades and today is a multidisciplinary project open to students from any university degree. The signifi cance of the investigations around this fossil site is refl ected in a large number of papers published in national and international journals. Additionaly, there are numerous outreach activities in geology and palaeontology with special attention to what we call Social Palaeontology. Finally, this project has a strong commitment to educational innovation in both non-formal (during school visits, open days at the site and science fairs) and formal university education, with the establishment of an introduction to investigation group in order to prepare young researchers in different fi elds of geology, palaeontology and education

    Single-cell Transcriptional Changes in Neurodegenerative Diseases

    Get PDF
    In recent decades, our understanding of the molecular changes involved in neurodegenerative diseases has been transformed. Single-cell RNA sequencing and single-nucleus RNA sequencing technologies have been applied to provide cellular and molecular details of the brain at the single-cell level. This has expanded our knowledge of the central nervous system and provided insights into the molecular vulnerability of brain cell types and underlying mechanisms in neurodegenerative diseases. In this review, we highlight the recent advances and findings related to neurodegenerative diseases using these cutting-edge technologies.At the time of writing this review, N.V.T is funded by a postdoctoral grant, Juan de la Cierva Programme (FJC2018-038085-I), Ministerio de Ciencia, Innovación y Universidades – Spanish State Research Agency. Her research is also supported by the “la Caixa'' Foundation (LCF/PR/GN17/10300004) and the Health Department of the Catalan Government (Health Research and Innovation Strategic Plan (PERIS) 2016–2020 grant #SLT002/16/00201). J.D.G is supported by the Spanish Ministry of Science and Innovation (RYC-2013-13054). All CRG authors acknowledge the support of the Spanish Ministry of Science, Innovation, and Universities to the EMBL partnership, the Centro de Excelencia Severo Ochoa, and the CERCA Programme/Generalitat de Catalunya

    Genetically predicted telomere length and its relationship with neurodegenerative diseases and life expectancy

    Get PDF
    Telomere length (TL) is a biomarker of biological aging. Shorter telomeres have been associated with mortality and increased rates of age-related diseases. However, observational studies are unable to conclude whether TL is causally associated with those outcomes. Mendelian randomization (MR) was developed for assessing causality using genetic variants in epidemiological research. The objective of this study was to test the potential causal role of TL in neurodegenerative disorders and life expectancy through MR analysis. Summary level data were extracted from the most recent genome-wide association studies for TL, Alzheimer’s disease (AD), Parkinson’s disease, Frontotemporal dementia, Amyotrophic Lateral Sclerosis, Progressive Supranuclear Palsy and life expectancy. MR estimates revealed that longer telomeres inferred a protective effect on risk of AD (OR = 0.964; adjusted p-value = 0.039). Moreover, longer telomeres were significantly associated with increased life expectancy (βIVW = 0.011; adjusted p-value = 0.039). Sensitivity analyses suggested evidence for directional pleiotropy in AD analyses. Our results showed that genetically predicted longer TL may increase life expectancy and play a protective causal effect on AD. We did not observe significant causal relationships between longer TL and other neurodegenerative diseases. This suggests that the involvement of TL on specific biological mechanisms might differ between AD and life expectancy, with respect to that in other neurodegenerative diseases. Moreover, the presence of pleiotropy may reflect the complex interplay between TL homeostasis and AD pathophysiology. Further observational studies are needed to confirm these results.This project has received funding from the Alzheimer’s Association (Grant AARG-19-618265). JDG is supported by the Spanish Ministry of Science and Innovation (RYC-2013-13054) Ministry of Science and Innovation– Spanish State Research Agency. NV-T is funded by a postdoctoral grant, Juan de la Cierva Programme (IJC2020-043216-I)

    Genetic characterization of the ALFA study : Uncovering genetic profiles in the Alzheimer's continuum

    Get PDF
    INTRODUCTION: In 2013, the ALzheimer's and FAmilies (ALFA) project was established to investigate pathophysiological changes in preclinical Alzheimer's disease (AD), and to foster research on early detection and preventive interventions. METHODS: We conducted a comprehensive genetic characterization of ALFA participants with respect to neurodegenerative/cerebrovascular diseases, AD biomarkers, brain endophenotypes, risk factors and aging biomarkers. We placed particular emphasis on amyloid/tau status and assessed gender differences. Multiple polygenic risk scores were computed to capture different aspects of genetic predisposition. We additionally compared AD risk in ALFA to that across the full disease spectrum from the Alzheimer's Disease Neuroimaging Initiative (ADNI). RESULTS: Results show that the ALFA project has been successful at establishing a cohort of cognitively unimpaired individuals at high genetic predisposition of AD. DISCUSSION: It is, therefore, well-suited to study early pathophysiological changes in the preclinical AD continuum. Highlights Prevalence of ε4 carriers in ALzheimer and FAmilies (ALFA) is higher than in the general European population The ALFA study is highly enriched in Alzheimer's disease (AD) genetic risk factors beyond APOE AD genetic profiles in ALFA are similar to clinical groups along the continuum ALFA has succeeded in establishing a cohort of cognitively unimpaired individuals at high genetic AD risk ALFA is well suited to study pathogenic events/early pathophysiological changes in AD

    Genetic predisposition to alzheimer's disease is associated with enlargement of perivascular spaces in centrum semiovale region

    Get PDF
    This study investigated whether genetic factors involved in Alzheimer's disease (AD) are associated with enlargement of Perivascular Spaces (ePVS) in the brain. A total of 680 participants with T2-weighted MRI scans and genetic information were acquired from the ALFA study. ePVS in the basal ganglia (BG) and the centrum semiovale (CS) were assessed based on a validated visual rating scale. We used univariate and multivariate logistic regression models to investigate associations between ePVS in BG and CS with BIN1-rs744373, as well as APOE genotypes. We found a significant association of the BIN1-rs744373 polymorphism in the CS subscale (p value = 0.019; OR = 2.564), suggesting that G allele carriers have an increased risk of ePVS in comparison with A allele carriers. In stratified analysis by APOE-ε4 status (carriers vs. non-carriers), these results remained significant only for ε4 carriers (p value = 0.011; OR = 1.429). To our knowledge, the present study is the first suggesting that genetic predisposition for AD is associated with ePVS in CS. These findings provide evidence that underlying biological processes affecting AD may influence CS-ePV
    corecore