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Abstract—In recent decades, our understanding of the molecular changes involved in neurodegenerative dis-
eases has been transformed. Single-cell RNA sequencing and single-nucleus RNA sequencing technologies have
been applied to provide cellular and molecular details of the brain at the single-cell level. This has expanded our
knowledge of the central nervous system and provided insights into the molecular vulnerability of brain cell types
and underlying mechanisms in neurodegenerative diseases. In this review, we highlight the recent advances and
findings related to neurodegenerative diseases using these cutting-edge technologies. � 2021 The Author(s). Pub-

lished by Elsevier Ltd on behalf of IBRO. This is an open access article under the CC BY-NC-ND license (http://creativecommons.

org/licenses/by-nc-nd/4.0/).
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INTRODUCTION

Neurodegenerative diseases are chronic and progressive

illnesses related to the central nervous system (CNS),

identified by the loss of neurons in the brain (Costa

et al., 2013). Many efforts at the molecular level have tried

to understand the basic biological mechanisms contribut-

ing to neurodegeneration (Wang et al., 2009;

Casamassimi et al., 2017). Although the main focus has

been placed on the role of protein metabolism and aggre-

gates in neurodegenerative diseases (NDDs), research-

ers try to decipher the role of transcriptomic alteration

as a contributing factor in the pathogenesis of these dis-

eases (Suntsova et al., 2019).
RNA-SEQUENCING TECHNIQUES

Next-generation RNA sequencing (RNA-Seq) has

become increasingly common for high-throughput

transcriptome analysis and revolutionized our

understanding of the molecular etiology of human
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disease (Wang et al., 2009; Costa et al., 2013;

Casamassimi et al., 2017). This technology reveals both

the presence and quantity of any transcript in multiple

human tissues affected by different disorders (Costa

et al., 2013; Suntsova et al., 2019). However, the conven-

tional RNA-Seq technique usually needs micrograms of

total RNA, which corresponds to hundreds of thousands

of cells. Getting such a large amount of RNA from biolog-

ical samples with a limited number of cells can be practi-

cally impossible (Tang et al., 2009). Besides, every cell

subpopulation in a given tissue may express a unique

transcriptome (Huang, 2009). Thus, bulk population

sequencing measures the average expression of tran-

scripts and likely results in missing essential data about

cell-to-cell variability of gene expression (Hwang et al.,

2018). To overcome these challenges, Tang et al.

(2009) introduced a single-cell RNA sequencing approach

(scRNA-Seq) to study a single mouse blastomere (Fig. 1).

Their results demonstrated the advantage of scRNA-Seq

over single-cell microarray in detecting the expression of

more genes and new splice variants at a single-cell reso-

lution. Since this first report in the field (Tang et al., 2009),

several scRNA-Seq platforms have been developed

(Fig. 2). They fall into two categories: Droplet-based

(e.g., Drop-Seq, inDrop, Seq-well, 10x Chromium Geno-

mics) and plate-based (e.g., MARS-Seq, Smart-Seq,
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Fig. 1. Single-cell technologies. Single-cell and single-nucleus RNA sequencing has provided unique insight into the transcriptomic changes that

occur in the brain.

Fig. 2. Timeline of single-cell sequencing methods milestones.
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Smart-Seq2, and STRT-Seq) based on their downstream

methods (Szczelkun et al., 2019, 2019). Recently, single

nuclei RNA sequencing (snRNA-Seq) has also been intro-

duced, which affords some advantages over scRNA-Seq

including comparable gene detection to scRNA-seq,

reduced dissociation bias, and compatibility with frozen

samples. In contrast, scRNA-seq methods are most

appropriate in situations when cells cannot be harvested
intact and viable, which is often true for preserved tissues,

and always true for some cell types (e.g. neurons, adipo-

cytes) (Bakken et al., 2018). All scRNA or snRNA-Seq

platforms share four steps: isolation of single cells or

nuclei, reverse transcription, cDNA synthesis, and

sequencing; but may utilize different techniques in each

step (Hedlund and Deng, 2018). The advantages and

drawbacks of each technique are comprehensively
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reviewed elsewhere (Hu et al., 2016; Nguyen et al., 2018;

Ding et al., 2019; Baran-Gale et al., 2018, 2018). These

techniques are currently increasingly used to identify,

characterize, and classify cell subpopulations in healthy

and diseased states of the brain (Cuevas-Diaz Duran

et al., 2017). In this regard, a few single-cell databases

have also been created to facilitate access to the most

updated findings using single-cell technologies (Table 1).

As our understanding of cell populations susceptible

to neurodegenerative diseases is of high importance

(Jiang et al., 2020), the present review will further focus

on the transcriptional changes in neurodegenerative dis-

eases at the single-cell resolution.
APPLICATION OF SCRNA-SEQ FOR
NEURODEGENERATIVE DISEASES

A major challenge in understanding the pathogenesis of

neurodegenerative diseases and brain aging is to

determine the body’s intrinsic mechanisms that could be

causative or protective against neurodegeneration. For

instance, increasing reports suggest that disease-

associated microglia (DAM), a recently identified subset

of microglia found at the damaged regions, might have

a protective role. This subpopulation was first identified

in a mouse model of Alzheimer’s disease by single-cell

RNA-seq (Keren-Shaul et al., 2017). DAMs are molecu-

larly identified with expressing microglial markers, Iba1,
Cst3, and Hexb, and downregulation of homeostatic

microglial genes, including P2ry12, P2ry13, Cx3cr1,

CD33, and Tmem119 (Butovsky et al., 2014). DAMs also

show upregulation of genes involved in lysosomal, phago-

cytic, and lipid metabolism pathways, including several

known AD risk factors, such as Apoe, Ctsd, Lpl, Tyrobp,
and Trem2 (Lambert et al., 2013). This subset of cells

has been proposed to have a dedicated sensory mecha-

nism to detect damage within the damaged brain in the

form of neurodegeneration-associated molecular patterns

(NAMPs), which has been fully discussed elsewhere

(Deczkowska et al., 2018). Here we discuss the involve-

ment of different cell types in neurodegeneration in more

detail.
Table 1. A list of available single-cell-specific databases

Database Data type Species

scRNASeqDB transcriptomics Human

PanglaoDB transcriptomics Human/mouse

Single-cell portal Genomics,

transcriptomics,

proteomics

Human/mouse/cell l

other animal models

EMBL-EBI single-cell

expression atlas

transcriptomics Animals/plants/fungi

Allain brain map transcriptomics Human/mouse

SCDevDB transcriptomics Human

scREAD transcriptomics Human/mouse (Alzh
ALZHEIMER’S DISEASE

Alzheimer’s disease (AD) is the most common cause of

dementia, which starts with mild memory loss and

eventually impairs executive and cognitive functions

(Tarawneh and Holtzman, 2012; Kirova et al., 2015;

Ahmadi et al., 2020). Extracellular deposition of amyloid

plaques and intracellular accumulation of hyperphospho-

rylated tau proteins are the pathological hallmarks of AD

(Fig. 3) (Perl, 2010). AD is usually defined by different

stages: mild cognitive impairment (MCI) in which people

have mild changes in their memory and thinking ability;

mild dementia when having significant trouble with mem-

ory and thinking that impacts daily functioning; moderate

dementia when people grow more confused and forgetful

and begin to need more help with daily activities and self-

care; and severe dementia when mental function contin-

ues to decline, and the disease has a growing impact

on movement and physical capabilities (Perl, 2010). Hip-

pocampus, entorhinal cortex, and the medial temporal

lobe are brain regions known to be affected early during

the disease process, whereas the sensory cortex and

motor cortex are known to be rather spared (Xu et al.,

2019). Different types of cells such as glia, neurons and

vascular cells (Sweeney et al., 2018) are affected by AD

in these regions (Miller et al., 2013; Narasimhan et al.,

2020). Several gene expression profiling studies have

been performed over the past two decades to understand

the molecular complexity that drives AD pathogenesis

(Loring et al., 2001; Blalock et al., 2004; Liang et al.,

2008; Liang et al., 2008; Berchtold et al., 2013; Miller

et al., 2013; Magistri et al., 2015; Wang et al., 2016;

Hokama et al., 2014, 2014). However, the precise tran-

scriptional changes across different cells, particularly

minor cell populations in an AD brain, cannot be practi-

cally obtained by profiling studies on bulk samples

(Mathys et al., 2019). Mathys et al. (2019) utilized an

snRNA-Seq approach to find gene expression changes

in the prefrontal cortex region of patients with varying

AD pathology degrees. Analyzing single nucleus tran-

scriptomes showed that all major cell types of the pre-

frontal cortex region were affected by AD pathology at

the transcriptional level. However, in excitatory and inhibi-
Accession/URL Ref.

https://bioinfo.uth.edu/

scrnaseqdb/

(Cao et al., 2017)

https://panglaodb.se/ (Franzén et al.,

2019, 2019)

ines and https://singlecell.broadinstitute.

org/single_cell

/protists https://www.ebi.ac.uk/gxa/sc/

home

https://portal.brain-map.org/

atlases-and-data/rnaseq

https://scdevdb.deepomics.org/ (Wang et al.,

2019)

eimer’s) https://bmbls.bmi.osumc.edu/

scread/

(Jiang et al.,

2020)

https://bioinfo.uth.edu/scrnaseqdb/
https://bioinfo.uth.edu/scrnaseqdb/
https://panglaodb.se/
https://singlecell.broadinstitute.org/single_cell
https://singlecell.broadinstitute.org/single_cell
https://www.ebi.ac.uk/gxa/sc/home
https://www.ebi.ac.uk/gxa/sc/home
https://portal.brain-map.org/atlases-and-data/rnaseq
https://portal.brain-map.org/atlases-and-data/rnaseq
https://scdevdb.deepomics.org/
https://bmbls.bmi.osumc.edu/scread/
https://bmbls.bmi.osumc.edu/scread/


Fig. 3. Pathobiology of Alzheimer’s diseases. The illustration depicts the pathological properties of the AD brain (involving tau protein) with that of

the healthy brain.
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tory neurons, most differentially expressed genes (DEGs)

were downregulated, whereas most DEGs in astrocytes,

microglia, and oligodendrocytes presented an upregula-

tion trend (Mathys et al., 2019).

Likewise, an analysis of DEGs using bulk RNA-Seq

data revealed predominant expressional changes in

excitatory neurons and oligodendrocytes (Mathys et al.,

2019). However, bulk RNA-Seq could not detect DEGs

like APOE with opposite directionality across all cell

types, which was down- and upregulated in astrocytes

and microglia, respectively. The majority of DEGs were

cell-type specific with top DEGs including LINGO1,
ERBIN, CNTNAP2, NEGR1, BEX1, NTNG1 involved in

processes such as myelination, axonal outgrowth, and

regeneration across different cell types. These processes

were suggested to be affected as a regulatory response to

maintain myelin integrity during AD pathogenesis. Com-

paring gene expression profiles between early pathology

(amyloid burden, but modest neurofibrillary tangles and

modest cognitive impairment) and late pathology (higher

amyloid burden, and also increased neurofibrillary tan-

gles, global pathology, and cognitive impairment) sub-

groups revealed that significant transcriptional changes

appeared early in pathological progression and were

mostly cell type-specific (Mathys et al., 2019). Besides,

although upregulated genes were common across cell

types in patients with late-stage pathology and mainly
encoded proteins involved in maintaining protein integrity,

the majority of the downregulated genes were cell-type

specific. Cell types such as excitatory neurons, inhibitory

neurons, astrocytes, microglia, and oligodendrocytes

each represented distinct correlations with multiple patho-

logical traits, indicating different groups of genes respond

to AD pathology in each cell type (Mathys et al., 2019).

Quantifying overrepresentation of genes from

genome-wide association studies (GWAS) revealed a

link between transcriptional responses to AD pathology

and genetic risk factors for AD (such as APOE, TREM2,
MEF2C, PICALM) in both neurons and glial cells

(Mathys et al., 2019). Also, different sets of cell subpopu-

lations were associated with different AD-pathology traits

(i.e., neuronal neurofibrillary tangle density, neurofibrillary

tangle burden, global AD-pathology burden, the global

measure of neocortical pathology, neuritic plaque burden,

overall amyloid level, and global cognitive function) and

the expression pattern of the genes specific to each sub-

population. Also, sex-specific transcriptional responses to

AD-pathology were observed in multiple cell types partic-

ularly in neurons and oligodendrocytes (Mathys et al.,

2019). For example, a global transcriptional activation in

oligodendrocytes was correlated with increased pathol-

ogy in males, whereas in females, increased pathology

was correlated with a global downregulation of gene activ-

ity in both excitatory and inhibitory neurons. The reduced
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transcriptional response, particularly in oligodendrocytes,

was suggested to be linked to white-matter changes in

females with AD pathology (Gallart-Palau et al., 2016).

As mentioned above, investigating molecular changes

in the damaged brain of mouse models identified the role

of some cell types such as DAMs in AD (Keren-Shaul

et al., 2017). Single-cell analysis of DAM in transgenic

AD mouse models revealed that the DAM program is acti-

vated in a two-step process, initially in a Trem2-

independent manner that involves downregulation of

microglia checkpoints, followed by activation of a

Trem2-dependent program. In 5XFAD and APP/PS1

models of AD, DAM co-localized with Ab plaques in the

cortex and were absent from the cerebellum, where Ab
plaques do not occur (Mrdjen et al., 2018).

To characterize the cellular heterogeneity and

transcriptional changes in the entorhinal cortex region of

AD patients’ brains, Grubman et al. (2019) analyzed

13,214 cells using snRNA-Seq. The DEGs that overlap

between this study and the Mathys et al. study (Mathys

et al., 2019) showed high concordance (>90%) of effect

across the major cell types. Their results revealed both

cell-independent and cell-type-specific transcriptional

alterations in the human AD brain’s entorhinal cortex.

Genes involved in response to misfolded proteins and cell

stress were coordinately regulated across multiple cell

types, possibly as a response to extracellular amyloid

deposition (Su et al., 2020). Also, astrocytes, endothelial

cells, and microglia were the cell types with the most coor-

dinated gene expression differences between AD patients

and healthy individuals. Upregulated genes in endothelial

cells were involved in cytokine secretion, immune

responses, and processes related to neurodegeneration,

while downregulated genes in neurons, oligodendrocytes,

astrocytes, and oligodendrocyte precursor cells (OPCs)

were related to behavior, cognition, and synapse organi-

zation functions. In contrast, upregulated genes in neu-

rons, astrocytes, and oligodendrocytes were related to

glial cell development, differentiation, and myelination.

Furthermore, genes involved in homeostasis, cell–cell

adhesion, lipid response, and G-protein-coupled receptor

pathways were downregulated in AD microglia. Besides,

genes related to synaptic transmission and ion transport

and mechanisms involved in memory were downregu-

lated in excitatory and inhibitory neurons, respectively

(Grubman et al., 2019).

AD-associated transcriptional changes were also

observed in most subclusters of each cell type. The

differential expressions were particularly evident for

CNS-related genes like LINGO1, NEAT1, and GRID1. In
addition, the molecular identity of specific neuronal

subsets (possibly as deep layer neurons) was more

susceptible to AD. Additional analysis of the expression

of 1000 GWAS candidate genes displayed cell-type-

specific expression patterns. For instance, APOE
revealed downregulation in a subcluster of OPC,

oligodendrocyte, and two subclusters of astrocytes, and

upregulation in a subcluster of microglia. The

relationship of regulatory factors such as the TFEB

transcription factor and AD-associated GWAS loci in

astrocytes showed subcluster-specific regulation of AD
genes (Grubman et al., 2019). These data demonstrated

a functional link between AD and certain astrocyte

subpopulations.

AD-related single-cell transcriptional changes have

also been observed in other human brain areas

including the caudal entorhinal cortex (affected early in

the course of AD) and the superior frontal gyrus

(affected late in AD) of patients carrying the APOE e3/e3
genotype (Leng et al., 2021). Although there was a down-

ward trend in the relative abundance of excitatory neurons

in Braak stages II and VI in the entorhinal cortex and

Braak stage VI in the superior frontal gyrus, no differences

were observed in the vulnerability of inhibitory neurons.

Three subpopulations of entorhinal cortex excitatory neu-

rons (EC: Exc.s2, EC: Exc.s4, and EC: Exc.s1) were

defined as selectively vulnerable excitatory neurons, of

which EC: Exc.s2 displayed the largest number of down-

regulated genes. These genes encode for pre-and post-

synaptic proteins. Similar transcriptional patterns of two

excitatory neuron subpopulations (Superior frontal gyrus

(SFG): Exc.s2 and SFG: Exc.s4) in the SFG suggest sim-

ilar selective vulnerability mechanisms in different brain

regions in AD (Leng et al., 2021). This was confirmed

by observing transcriptional similarity (e.g., expression

of RORB gene) between excitatory subpopulation 4 in

the prefrontal cortex of male participants (Mathys et al.,

2019; Marinaro et al., 2020) and entorhinal cortex (EC):

Exc.s2 and EC: Exc.s4 cell types (Leng et al., 2021).

Although the increased relative abundance of microglia

was observed in the entorhinal cortex in AD progression,

the expression of DAM markers was not detected (Leng

et al., 2021). In contrast, Olah et al. observed a reduced

frequency of a microglia cluster in the dorsolateral pre-

frontal cortex and the temporal cortex regions of AD

patients, which was enriched for AD-related genes

(Olah et al., 2020).

By sub-clustering of oligodendrocytes in the entorhinal

cortex and superior frontal gyrus, Leng et al. (2021)

revealed subpopulations (EC: Oligo.s0 and EC: Oligo.

s4; SFG: Oligo.s1 and SFG: Oligo.s2) that exhibited

higher expression of AD-associated oligodendrocyte

genes similar to subpopulation Oli0 in a previous study

(Mathys et al., 2019). Subclustering of astrocytes

revealed that three subpopulations (EC: Astro.s3, SFG:

Astro.s4, and SFG: Astro.s5) expressed dramatically

higher levels of GFAP, a marker of reactive astrocytes,

and were referred to as GFAPhigh astrocytes (Leng

et al., 2021). These subpopulations behave identically

compared to astrocyte subpopulation 2 of Mathys et al.

study in upregulating reactive astrocyte markers and

downregulating genes associated with glutamate/GABA

homeostasis and synaptic adhesion (Leng et al., 2021).

Although both scRNA-Seq and snRNA-Seq

technologies are becoming popular for transcriptional

profiling of AD, recent evidence suggests that snRNA-

Seq is not suitable for the detection of microglial

activation genes in humans (Thrupp et al., 2020). Thrupp

et al observed that a group of genes (�1%) is depleted in

nuclei compared to whole cells. This set of genes is

enriched for microglial activation genes, including APOE,

CST3, SPP1, and CD74, comprising 18% of previously
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identified microglial-disease-associated genes (Thrupp

et al., 2020). Altogether, snRNA-Seq results highlight

the mechanisms of cell-type expressional heterogeneity

and dysfunction in AD and may also explain why the

whole-body gene knockouts in AD models have often

yielded discrepant results (Götz et al., 2004; Leung and

Jia, 2016).

PARKINSON’S DISEASE

Parkinson’s disease (PD) is the most common

neurodegenerative movement disorder that affects 2–

3% of the population over 65 years of age (Poewe

et al., 2017). Loss of dopaminergic (DA) neurons in the

substantia nigra (SN) and intracellular aggregation of

the a-synuclein protein are the main hallmarks of PD

(Fig. 4) (Poewe et al., 2017; Balestrino and Schapira,

2020). However, the heterogeneity of DA neurons and

the reason for their vulnerability to degeneration remains

mainly unknown. Single-cell transcriptional analysis of

forebrain, midbrain, and olfactory bulb regions of mice

showed all DA subtypes, except those in SN and peri-

aqueductal gray area, expressed either GABAergic or glu-

tamatergic markers during development (Hook et al.,
Fig. 4. A schematic of the pathology of PD. In normal situations, a-synuclein e

variants of a-synuclein (dimers, trimers, and oligomers) are resulted due to m

as amyloid fibrils) in Lewy bodies and Lewy neurites. Healthy quality c

phagolysosomes that clear misfolded proteins are overwhelmed by oligomeric

(a-synucleinopathy) between neurons and cause clinical disease.
2018). Postnatal SN DA neurons revealed 110 marker

genes significantly associated with PD, suggesting their

role in preferential susceptibility of the SN in PD. Further-

more, 24 PD-related GWAS loci represented association

with single genes including Mmp16, Tsnax, Satb1, Snca,

Pdzrn4, and Gch1 in SN DA neurons, revealed by

scRNA-Seq (Hook et al., 2018).

In vitro studies (Lang et al., 2019) using bulk RNA-Seq

on iPSC-derived DA neurons from PD patients, carrying

the most common variant (GBA-N370S) in the glucocere-

brosidase gene, revealed DEGs involved in neuronal

development and differentiation, synaptic activity, and

zinc ion transport (Lang et al., 2019). Instead, scRNA-

Seq results initially stratified GBA-N370S carriers based

on the expression of genes belonging to the SRP-

dependent co-translational protein targeting the mem-

brane pathway. Overall, 60 genes were consistently

deregulated in PD GBA-N370S iPSC-derived DA neu-

rons, using both techniques (Lang et al., 2019). Genes

downregulated at early stages of the disease were impli-

cated in neuronal function, microtubule function and for-

mation, microtubule-associated protein tau splicing,

neurite and axonal outgrowth, protein secretion and traf-
xists in a soluble random coil state. In pathological states, pathogenic

isfolded a-synuclein that further aggregate into other toxic forms (such

ontrol systems such as chaperones, ubiquitin proteasomes, and

species of a-synuclein. a-synuclein fibrils are able to transmit disease
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ficking, and protein kinase C pathway, whereas ER

stress-related genes were upregulated in late phases.

Importantly, HDAC4 mislocalized to the nucleus was

found as a repressor of a set of the downregulated genes

in the PD GBA-N370S iPSC-derived dopaminergic neu-

rons. These results suggested that the modulators of

HDAC4 activity or localization could correct PD-related

cellular phenotypes (Lang et al., 2019).

Another similar in vitro experiment using iPSC-derived

DA neurons displayed eight individual clusters consisting

of two neuron progenitor populations and four

dopaminergic neuron populations (DAn1–DAn4)

(Fernandes et al., 2020). All dopaminergic neurons, par-

ticularly DAn1, were closely linked with substantia nigra

mouse and human neurons reported by previous studies

(Fernandes et al., 2020). Moreover, an in vitro model of

PD generated via treating neurons with rotenone, a toxic

pesticide causing PD-like symptoms, exhibited a signifi-

cant reduction in the proportion of DAn1 with differences

in synaptic transmission, lipid biosynthesis, and neuronal

apoptotic genes and a strong representation of DAn2 neu-

rons in the post-treatment culture (Fernandes et al.,

2020). The opposing regulation of heat shock stress

response and cell death genes in DAn1 and DAn2 neu-

rons was found to be a factor underlying the selective vul-

nerability of these dopamine neurons in response to

oxidative stress (Fernandes et al., 2020). The impact of

a PD-associated genetic mutation (A53T) on the expres-

sion profile of dopamine neurons differentiated from

SNCA-A53T mutant iPSC demonstrated activation of

stress and cell death pathways in mutant DAn1 cells.

Treatment of SNCA-A53T mutant dopaminergic neurons

with rotenone -a pesticide that is used to generate animal

models of PD (Huang et al., 2018)- led to robust upregu-

lation of glycolysis and cholesterol biosynthesis genes in

DAn1 mutant cells. Altogether, results demonstrate tran-

scriptional changes exclusively in DAn1 neurons under

cytotoxic and genetic stressors, suggesting a differential

response of subtypes of dopamine neurons to different

stressors (Fernandes et al., 2020).

Although most of the research in PD has focused on

nigrostriatal DA neurons, the main findings still show the

involvement of cell types such as astrocytes and

microglia in PD pathogenesis (Brück et al., 2016; Booth

et al., 2017; Reynolds et al., 2019). Integrative analysis

of GWAS and scRNA-Seq data exhibited enrichment of

autophagy genes in oligodendrocytes and cholinergic/

mono-aminergic neurons, the lysosomal gene set in

microglia, and the mitochondrial gene sets in almost all

brain cell types (Reynolds et al., 2019). This suggests that

PD risk loci lie in global cellular processes detectable

across different cell types.

To understand the role of microglial in the

pathobiology of PD, Huarte et al. (2021) combined

single-cell RNA-sequencing with immunofluorescence

analyses of the murine nigrostriatal region, the most

affected brain region in PD. A microglia subpopulation,

which is mainly present in the midbrain, showed a tran-

scriptional signature related to immune pathways sharing

features of inflammation-induced microglia. In addition, an

in situ morphological screening of inferred cellular diver-
sity displayed a reduced microglia complexity in the mid-

brain in comparison with the striatum. This suggests the

involvement of specific microglia phenotypes within the

nigrostriatal pathway related to PD pathogenesis

(Uriarte Huarte et al., 2021).

In addition to in vitro and animal model studies,

snRNA-seq analysis of post-mortem brain tissues from

idiopathic PD (IPD) individuals (Smajic et al., 2020) iden-

tified PD risk variants associated with microglia and

neuronal-specific genes, but less associated with OPCs

and astrocytes-specific genes (Smajic et al., 2020). Cell-

type compositional changes revealed an increase in the

fraction of microglia and astrocytes and a decreased frac-

tion of oligodendrocytes in IPD midbrains. Also, a nega-

tive association of male sex with the neuronal cells,

inhibitory, excitatory, GABA, and dopaminergic neurons

suggests that PD pathophysiology might affect the mid-

brain cellular composition in a sex-dependent manner

(Smajic et al., 2020). PD-risk variants presented an asso-

ciation with glia- and neuron-specific gene expression

patterns. In addition, microglia and astrocytes revealed

IPD-specific cell proliferation and dysregulation of genes

involved in unfolded protein response and cytokine signal-

ing. IPD-microglia revealed a specific pro-inflammatory

trajectory. A neuronal cell cluster exclusively present in

IPD midbrains identified by CADPS2 overexpression

and a high proportion of cycling cells. This implies that

increased expression of CADPS2 is specific to dysfunc-

tional dopaminergic neurons, which have lost their

dopaminergic identity and unsuccessful attempt to re-

enter the cell cycle (Smajic et al., 2020). Altogether,

despite these few scRNA-Seq studies, more research

needs to be performed, especially on different human

brain regions, to improve our understanding of PD etiol-

ogy at the level of different cell types.
HUNTINGTON’S DISEASE

Huntington’s disease (HD) is an inherited

neurodegenerative disease caused by a CAG

trinucleotide repeat expansion in the HTT gene (Fig. 5)

(Ross et al., 2014). Patients with HD show motor, cogni-

tive, and psychiatric symptoms in midlife (Ghosh and

Tabrizi, 2018). The major pathology site is basal ganglia,

and projection neurons are the major cell types affected

by HD in both striatum and globus pallidus subdivisions

(Reiner et al., 2011). Cell loss and shrinkage were also

detected in other brain areas including the cerebral cortex

(Selemon et al., 2004), amygdala (Kipps et al., 2007,

2007), thalamus (Douaud et al., 2006), hypothalamus

(Petersén et al., 2005, 2005), substantia nigra (Douaud

et al., 2006), cerebellum (Vonsattel, 2007), and brainstem

(Koeppen, 1989). Transcriptional analysis of blood and

postmortem brain samples of HD patients using RNA-

Seq (Hensman Moss et al., 2017) exhibited dysregulation

of genes involved in the immune system (Neueder and

Bates, 2014; Mastrokolias et al., 2015; Miller et al.,

2016), alternative splicing (Lin et al., 2016), neuroinflam-

mation, and development (Labadorf et al., 2015). How-

ever, due to the limitation of bulk RNA-Seq in attributing

DEGs mainly to astrocytes and microglia (Hodges et al.,



Fig. 5. Pathobiology of Huntington’s diseases. The HTT gene contains a repeat of CAG codon coding for glutamine. If the repeat contains more

than 35 repeats, it will lead to the development of Huntington’s disease within a person’s normal lifetime. This mutation results in the production of an

altered protein leading to dysfunction and neuronal death in the brain’s striatum region.
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2006, 2006). Al-Dalahmah et al. (Diaz-Castro et al., 2019;

Al-Dalahmah et al., 2020) used both RNA-Seq and

snRNA-Seq to uncover HD-related expression profiles in

the cingulate cortex area with a focus on astrocytes.

The results showed the deregulation of genes involved

in the immune system and neurotoxic, neuroprotective,

and pan-reactive astrocytic genes in HD cases. However,

snRNA-Seq showed reduced expression of Alzheimer’s

genes related to neurotransmitters functions in HD astro-

cytes, while upregulated genes were mostly enriched in

metabolic pathways (Al-Dalahmah et al., 2020). Two HD

astrocyte subclusters expressed high levels of metalloth-

ionein (MT) genes (markers for early reactive astrocyte

clusters) and GFAP. The higher expression of MT genes

in the astrocytic cluster Ast1 in the frontal cortex of human

late-onset AD (Mathys et al., 2019) and the Brodmann

area 4 of HD brain as well (Lin et al., 2016) was sug-

gested to be a protective response to damage (van

Lookeren Campagne et al., 1999; Al-Dalahmah et al.,

2020). These studies demonstrated transcriptional

changes of particular cell types such as reactive astro-

cytes in HD pathology (Al-Dalahmah et al., 2020).
MULTIPLE SCLEROSIS

Multiple sclerosis (MS) is the most common

neuroinflammatory disease of young adults that attacks

oligodendrocytes in the central nervous system (CNS)

and causes demyelination and focal plaque formation

(Fig. 6) (Dobson and Giovannoni, 2019). As plaques

can form in different CNS areas in both white and gray

matter, the MS clinical manifestation may be diverse

(Compston and Coles, 2002; Klaver et al., 2013). The pla-

ques are generally located around post-capillary venules

and are characterized by the breakdown of the blood–

brain barrier (BBB). Proinflammatory cytokines and

chemokines produced by resident cells and endothelial

cells dysregulate the BBB, resulting in migration of acti-

vated leukocytes into the CNS, oligodendrocyte loss,

and demyelination (Filippi et al., 2018).

Although the molecular pathobiology of MS is still

poorly understood, recent transcriptional studies have

tried to shed the light on cell-type-specific mechanisms

of MS lesions (Schirmer et al., 2019), understand the vari-

ability of MS symptoms (Jäkel et al., 2019), and charac-

terize leukocytes in the cerebrospinal fluid of patients



Fig. 6. Molecular mechanisms in the pathology of autoimmune diseases such as in MS and ALS. In the disease conditions: (1) Astrocytes are not

able to support neuronal functions leading to neuronal excitotoxicity; (2) A damage to brain-blood-barrier leads to infiltration of lymphocytes and

activation of inflammatory pathways; (3) The secretion of pro-inflammatory cytokines by activated microglia contributes to the development of an

inflammatory milieu; (4) Dysfunctional microglia and astrocytes lead to degeneration of myelin sheath; and (5) synaptic failure, denervation and

finally, muscle atrophy.
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with MS (Schafflick et al., 2020). Transcriptional profiling

of cortical gray matter (GM) and adjacent subcortical

white matter (WM) lesion areas at different stages of

inflammation and demyelination in MS patients

(Schirmer et al., 2019) exhibited a selective decrease in

numbers of CUX2-expressing excitatory neurons (ENs)

of the upper layer (L2-L3) in MS patients with cortical

demyelination, which was associated with the meningeal

infiltration of plasma B cells expressing pro-inflammatory

cytokines IGHG1 and MZB1. In contrast, co-located inhi-

bitory and other cortical EN subtypes were relatively pre-

served. Moreover, MS-associated genes showed the

greatest differential expression in these cells, suggesting

the cell-type vulnerability of L2–L3 ENs in MS lesion

pathology (Schirmer et al., 2019). Oxidative stress, mito-

chondrial dysfunction, and cell death pathways were acti-

vated pathways in these cells. In contrast, mitochondrial

energy consumption, glutamate signaling, and potassium

or cation homeostasis were amongst downregulated gene

ontology terms in L2–L3 ENs of patients with MS

(Table S1) (Schirmer et al., 2019). The expression pro-

files of astrocytes were also affected by MS lesions; how-

ever, reactive astrocytes showed distinct expression

patterns in cortical versus subcortical MS lesions. Oligo-

dendrocytes and microglial cells were affected mainly at

chronic active boundaries of subcortical MS lesions. For

example, myelinating oligodendrocytes characterized by

myelin gene expression and the transcription factor

ST18 showed molecular changes indicating cellular
stress, degeneration, and iron overload (Schirmer et al.,

2019). MS-microglia were enriched in transcripts encod-

ing activation markers, complement factors, MHC class

II-associated proteins, and lipid degradation proteins.

These results show activation of immune system genes

in particular cell types such as ENs and microglia in MS

patients.

The study of different white matter areas of MS

patients using snRNA-Seq (Jäkel et al., 2019) revealed

transcriptional alterations in MS-oligodendrocytes includ-

ing upregulation of several myelin protein genes. Similar

upregulation of myelin genes was also observed in

normal-appearing white matter (NAWM) of MS patients.

An oligodendrocyte subcluster (Oligo1) was found

depleted in MS, whereas the Oligo2, Oligo3, Oligo5, and

immune oligodendroglia (ImOLG) clusters which were

closely associated with microglia were enriched in MS.

Also, fewer nuclei from OPCs were observed in all MS

lesions and NAWM. Besides, oligodendrocyte subcluster

6 (Oligo6) was also highly reduced in MS patients both

in lesions and in NAWM. These findings are in line with

the concept that NAWM is indeed dysfunctional in MS

(Pardini et al., 2017).

In contrast to brain tissue changes, single-cell maps of

blood leukocytes (Schafflick et al., 2020) demonstrated no

significant differences in blood cell composition in MS

patients. However, MS altered the cell type composition

of cerebrospinal fluid (CSF) such that all B lineage cell

clusters, some natural killer cells (CD56dim NK1, CD56bri
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NK2), CD8 naı̈ve (CD8na) and regulatory T (Treg) cells,

and a myeloid dendritic cell type (mDC1) were signifi-

cantly increased. Disease-associated transcriptional

changes were also evident in CSF cell clusters

(Table S1). A greater proportion of genes was differen-

tially expressed in blood than in CSF. This could be due

to preferentially increased transcriptional and cell-type

diversity in blood and CSF, respectively, suggesting

compartment-specific disease mechanisms in MS

(Schafflick et al., 2020). Focusing on CD4 T cells showed

a reduction of a single memory-like cluster in MS patients’

blood. Eventually, a CD4 subcluster of memory cells that

expressed multiple genes associated with the cytotoxic

function and pathogenicity, was more abundant in MS

patients’ CSF (Schafflick et al., 2020). These findings

reflect the relationship between transcriptional changes

in immune cells of CSF and brain tissues in MS.
AMYOTROPHIC LATERAL SCLEROSIS (ALS)

Amyotrophic lateral sclerosis (ALS) is recognized as a

multisystem neurodegenerative disorder, with disease

heterogeneity at the clinical, genetic, and

neuropathological levels (Hardiman et al., 2017; Longo

et al., 2017). The clinical characteristics of ALS usually

include adult-onset focal muscle weakness and wasting,

which tends to spread with disease progression. About

50% of patients suffer from extra-motor manifestations

to some degree in addition to their motor problems

(Phukan et al., 2007). About 15% of ALS cases represent

an additional diagnosis of frontotemporal dementia, while

nearly 40% of cases show mild behavioral and/or cogni-

tive impairments (Neary et al., 1998; Phukan et al.,

2007). Almost 20% of ALS cases have a familial back-

ground. The most frequent genetic factors in ALS include

hexanucleotide expansions in chromosome 9 open read-

ing frame 72 (C9orf72) and mutations in superoxide dis-

mutase 1 (SOD1), TAR DNA-binding protein 43

(TARDBP), fused in sarcoma (FUS), and TANK-binding

kinase 1 (TBK1) (Hardiman et al., 2017).

The most common neuropathological signature of

ALS is the cytoplasmic aggregation of TDP-43 protein,

encoded by the TARDBP gene, which is present in

almost 95% of ALS cases (Neumann et al., 2006). TDP-

43 is normally localized to the nucleus under basal condi-

tions, but in ALS is mislocalized to the cytoplasm to form

aggregates and become phosphorylated (Bertram and

Tanzi, 2005; Chou et al., 2018). Other aggregating pro-

teins, such as SOD1 and FUS, are found in patients bear-

ing SOD1 and FUS mutations, respectively (Mueller et al.,

2020). Patients with C9orf72 hexanucleotide repeat

expansions have accumulations of dipeptide repeat pro-

teins which are translated from the GGGGCC repeats,

although this repeat is located in a non-coding region of

the gene (Bertram and Tanzi, 2005).

Animal models and ALS patient-derived cell

differentiation have been used to study the genetic

components of ALS, particularly in motor neurons

(Philips and Rothstein, 2015; Sances et al., 2016).

Induced pluripotent stem cells (iPSC)-based disease

modeling with a combination of genome engineering
and RNA sequencing revealed activated ERK and JNK

signaling as key players of neurodegeneration in SOD1-

mutant motor neurons (MNs) (Chen et al., 2014). The

AP1 complex member JUN, an ERK/JNK downstream

target, was observed to be highly expressed in MNs com-

pared with non-MNs, providing mechanistic insight into

the specific degeneration of MNs (Chen et al., 2014).

Liu et al (Liu et al., 2020) performed a scRNA-Seq analy-

sis of samples obtained from the brainstem of wildtype

and mutant SOD1 symptomatic mice, respectively. Cell

types with more transcriptomic alterations in ALS mice

were astrocytes > oligodendrocytes > Microglia > Ne

urons2 > OPC > endothelial > Schwann

Cells > Neurons1 > Ependymal. The most consistent

DEG across cell types was Sod1 (Liu et al., 2020), along

with other genes (e.g., Malat1, mt-Cytb, mt-Rnr2) that

also showed significant differential expression across cell

types. Several genes had a highly cell-type-specific differ-

ential expression (e.g., Tmem255a in TG sensory cells

and Scn2a1 in MNs) indicating distinct changes in individ-

ual cell types (Liu et al., 2020). DEGs of individual cell

populations revealed cell-type-specific alterations in

numerous pathways, including previously known ALS

pathways such as inflammation (in microglia), stress

response (ependymal and an uncharacterized cell popu-

lation), neurogenesis (astrocytes, oligodendrocytes, neu-

rons), synapse organization and transmission (microglia,

oligodendrocyte precursor cells, and neuronal subtypes),

and mitochondrial function (uncharacterized cell popula-

tions). Other cell-type-specific processes altered in the

SOD1-mutant brainstem include those from motor neu-

rons (axon regeneration, voltage-gated sodium and

potassium channels underlying excitability, potassium

ion transport), trigeminal sensory neurons (detection of

temperature stimulus involved in sensory perception),

and cellular response to toxic substances (uncharacter-

ized cell populations) (Liu et al., 2020). Whole transcrip-

tome profiling of spinal cord ventral horns of post-

mortem ALS human donors using RNA-Seq showed

1160 deregulated genes, of which downregulated genes

were neurons-related while upregulated genes were with

glial origin involved in neuroinflammation (D’Erchia

et al., 2017). Significant alterations of SNAP25 and

STX1B at both transcriptomic and proteomic levels were

observed which leads to impaired synaptic function as a

result of calcium elevation and glutamate excitotoxicity

(D’Erchia et al., 2017).

In addition, molecular changes have been found in

DAMs during neurodegenerative disease activation

using the SOD1G93A mouse model of ALS (Chiu et al.,

2013). Findings from this study displayed that SOD1G93A

DAMs are not derived from infiltrating monocytes and that

both potentially neuroprotective and toxic factors, includ-

ing AD genes, are concurrently upregulated along with

posttranscriptional regulation of microglia surface recep-

tors and T cell-associated changes in the transcriptome.

Transcriptome profiling has also been utilized to

investigate transcriptional changes at the single-cell

resolution in ALS. Namboori et al. (2021) have also

recently utilized scRNA-Seq of degenerating motor neu-

rons derived from ALS patients to unravel key disturbed
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pathways in ASL pathogenesis. Genes involved in synap-

tic structure, neuromuscular junction, neuronal cytoskele-

ton, and mitochondrial function showed significant

downregulation in ALS-motor neurons (Namboori et al.,

2021). However, interneurons did not show similar sup-

pression of these homeostatic functions. Single-cell

expression data also provided a context-specific tran-

scriptional network relevant to ALS neurons. Master reg-

ulator analysis on this network identified core

transcriptional factors driving the ALS disease signature.

Specifically, suppression of HOXA1 and HOXA5 genes

was correlated to synaptic dysfunction in ALS motor neu-

rons (Namboori et al., 2021). This likely reflects that sup-

pression of HOX genes may be a general phenomenon in

SOD1 ALS (Ragagnin et al., 2019). Despite these impor-

tant findings, more studies in the future are required to

uncover the relatedness of transcriptional dysregulation

in brain cell types and the mechanism of ALS

pathogenesis.

To conclude, technologies such as scRNA-Seq and

snRNA-Seq may be applied to achieve multiple goals in

our understanding of brain health and disease. The data

produced by these technologies could help re-evaluate

hypotheses about differences between pre-defined

sample groups at the single-cell level—regardless of

their original classification. The application of these

technologies for analysis of transcriptomic changes

throughout disease stages in future human studies

could provide detailed molecular vulnerability of specific

cell types in the brain as an advantage over bulk RNA-

Seq. Regarding this, scRNA-Seq databases will

facilitate access to neurodegenerative-related findings

(Jiang et al., 2020). Another goal could be providing a

molecular atlas of the brain at the single-cell resolution

which may enhance our knowledge of spatiotemporal

structure and connectivity of cell types subpopulations in

the brain. However, even though sc-RNA-Seq operates

at the most basic level, mapping cell types and states at

a specific level of resolution of interest may be challeng-

ing: Achieving the targeted level of resolution for the

intended map of cells may require substantial method-

ological efforts.

Importantly, scRNA-Seq and snRNA-Seq

technologies will facilitate the identification of sensitive

diagnostic and prognostic biomarkers by investigating

the discrepancies between patients and healthy

individuals as well as using animal models. In this line,

a great amount of research has been focused on

understanding transcriptional changes in AD, and yet

there is space for other neurodegenerative diseases to

be more investigated. Eventually, the ultimate goal is to

achieve efficient treatments by finding novel molecular

targets in the CNS using scRNA-Seq and snRNA-Seq.
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