3,393 research outputs found

    Off-shell Green functions at one-loop level in Maxwell-Chern-Simons quantum electrodynamics

    Full text link
    We derive the off-shell photon propagator and fermion-photon vertex at one-loop level in Maxwell-Chern-Simons quantum electrodynamics in arbitrary covariant gauge, using four-component spinors with parity-even and parity-odd mass terms for both fermions and photons. We present our results using a basis of two, three and four point integrals, some of them not known previously in the literature. These integrals are evaluated in arbitrary space-time dimensions so that we reproduce results derived earlier under certain limits.Comment: 23 pages, 4 figures, version published in Phys. Rev.

    Progress towards 2 to 2 scattering at two-loops

    Full text link
    We discuss the two-loop integrals necessary for evaluating massless 2 to 2 scattering amplitudes. As a test process, we consider the leading colour two-loop contribution to qqbar to q'qbar'. We show that for physical scattering processes the two Smirnov-Veretin planar box graphs I1 and I2 are accompanied by factors of 1/(D-4) thereby necessitating a knowledge of both I1 and I2 to O(epsilon). Using an alternative basis I1 and the irreducible numerator integral I3, the factors of 1/(D-4) disappear.Comment: 6 pages, latex, npb.sty, 3 postscript figures, contributed to proceedings of "Loops and Legs in Quantum Field Theory", Bastei, Germany, April 9-14, 200

    Broadening of H2_2O rotational lines by collision with He atoms at low temperature

    Get PDF
    We report pressure broadening coefficients for the 21 electric-dipole transitions between the eight lowest rotational levels of ortho-H2_2O and para-H2_2O molecules by collisions with He at temperatures from 20 to 120 K. These coefficients are derived from recently published experimental state-to-state rate coefficients for H2_2O:He inelastic collisions, plus an elastic contribution from close coupling calculations. The resulting coefficients are compared to the available experimental data. Mostly due to the elastic contribution, the pressure broadening coefficients differ much from line to line, and increase markedly at low temperature. The present results are meant as a guide for future experiments and astrophysical observations.Comment: 2 figures, 2 table

    The anapole moment in scalar quantum electrodynamics

    Full text link
    The anapole moment of a charged scalar particle is studied in a model independent fashion, using the effective Lagrangian technique, as well as radiatively within the context of scalar quantum electrodynamics (SQED). It is shown that this gauge structure is characterized by a non renormalizable interaction, which is radiatively generated at the one--loop. It is found that the resulting anapole moment for off-shell particles, though free of ultraviolet divergences, is gauge dependent and thus it is not a physical observable. We also study some of its kinematical limits. In particular, it is shown that its value comes out to be zero when all particles are on--shell.Comment: 4 pages, 1 figur

    How different Fermi surface maps emerge in photoemission from Bi2212

    Full text link
    We report angle-resolved photoemission spectra (ARPES) from the Fermi energy (EFE_F) over a large area of the (kx,kyk_x,k_y) plane using 21.2 eV and 32 eV photons in two distinct polarizations from an optimally doped single crystal of Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} (Bi2212), together with extensive first-principles simulations of the ARPES intensities. The results display a wide-ranging level of accord between theory and experiment and clarify how myriad Fermi surface (FS) maps emerge in ARPES under various experimental conditions. The energy and polarization dependences of the ARPES matrix element help disentangle primary contributions to the spectrum due to the pristine lattice from those arising from modulations of the underlying tetragonal symmetry and provide a route for separating closely placed FS sheets in low dimensional materials.Comment: submitted to PR

    Feynman parametrization and Mellin summation at finite temperature

    Full text link
    We show that the Mellin summation technique (MST) is a well defined and useful tool to compute loop integrals at finite temperature in the imaginary-time formulation of thermal field theory, especially when interested in the infrared limit of such integrals. The method makes use of the Feynman parametrization which has been claimed to have problems when the analytical continuation from discrete to arbitrary complex values of the Matsubara frequency is performed. We show that without the use of the MST, such problems are not intrinsic to the Feynman parametrization but instead, they arise as a result of (a) not implementing the periodicity brought about by the possible values taken by the discrete Matsubara frequencies before the analytical continuation is made and (b) to the changing of the original domain of the Feynman parameter integration, which seemingly simplifies the expression but in practice introduces a spurious endpoint singularity. Using the MST, there are no problems related to the implementation of the periodicity but instead, care has to be taken when the sum of denominators of the original amplitude vanishes. We apply the method to the computation of loop integrals appearing when the effects of external weak magnetic fields on the propagation of scalar particles is considered.Comment: 16 pages, 1 figure. Discussion expanded. References added. Published versio

    Observation of crystallization slowdown in supercooled para-hydrogen and ortho-deuterium quantum liquid mixtures

    Get PDF
    We report a quantitative experimental study of the crystallization kinetics of supercooled quantum liquid mixtures of para-hydrogen (pH2_2) and ortho-deuterium (oD2_2) by high spatial resolution Raman spectroscopy of liquid microjets. We show that in a wide range of compositions the crystallization rate of the isotopic mixtures is significantly reduced with respect to that of the pure substances. To clarify this behavior we have performed path-integral simulations of the non-equilibrium pH2_2-oD2_2 liquid mixtures, revealing that differences in quantum delocalization between the two isotopic species translate into different effective particle sizes. Our results provide first experimental evidence for crystallization slowdown of quantum origin, offering a benchmark for theoretical studies of quantum behavior in supercooled liquids.Comment: 6 pages, 3 figure
    corecore