100 research outputs found

    Mitochondrial Dysfunction in Parkinson's Disease: Pathogenesis and Neuroprotection

    Get PDF
    Mitochondria are vitally important organelles involved in an array of functions. The most notable is their prominent role in energy metabolism, where they generate over 90% of our cellular energy in the form of ATP through oxidative phosphorylation. Mitochondria are involved in various other processes including the regulation of calcium homeostasis and stress response. Mitochondrial complex I impairment and subsequent oxidative stress have been identified as modulators of cell death in experimental models of Parkinson's disease (PD). Identification of specific genes which are involved in the rare familial forms of PD has further augmented the understanding and elevated the role mitochondrial dysfunction is thought to have in disease pathogenesis. This paper provides a review of the role mitochondria may play in idiopathic PD through the study of experimental models and how genetic mutations influence mitochondrial activity. Recent attempts at providing neuroprotection by targeting mitochondria are described and their progress assessed

    Chelators in the Treatment of Iron Accumulation in Parkinson's Disease

    Get PDF
    Iron is an essential element in the metabolism of all cells. Elevated levels of the metal have been found in the brains of patients of numerous neurodegenerative disorders, including Parkinson's disease (PD). The pathogenesis of PD is largely unknown, although it is thought through studies with experimental models that oxidative stress and dysfunction of brain iron homeostasis, usually a tightly regulated process, play significant roles in the death of dopaminergic neurons. Accumulation of iron is present at affected neurons and associated microglia in the substantia nigra of PD patients. This additional free-iron has the capacity to generate reactive oxygen species, promote the aggregation of α-synuclein protein, and exacerbate or even cause neurodegeneration. There are various treatments aimed at reversing this pathologic increase in iron content, comprising both synthetic and natural iron chelators. These include established drugs, which have been used to treat other disorders related to iron accumulation. This paper will discuss how iron dysregulation occurs and the link between increased iron and oxidative stress in PD, including the mechanism by which these processes lead to cell death, before assessing the current pharmacotherapies aimed at restoring normal iron redox and new chelation strategies undergoing research

    Increasing levels of the endocannabinoid 2-AG is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease

    Get PDF
    Date of Acceptance: 28/07/2015 The authors are grateful to the staff of the Medical Research Facility for their help with the animal care. This work was supported by the NHS Endowment fund 09/03 and the Wellcome Trust (WT080782MF). We thank Merck & Co. Inc., Rathway NJ, USA for the supply of DFU.Peer reviewedPublisher PD

    A Self-administered version of the functioning assessment short test for use in population-based studies: A pilot study

    Get PDF
    Background: The Functioning Assessment Short Test (FAST) is an interviewer-administered scale assessing functional impairment originally developed for psychiatric patients. Objectives: To adapt the FAST for the general population, we developed a self-administered version of the scale and assessed its properties in a pilot study. Methods: The original FAST scale was translated into German via forward and backward translation. Afterwards, we adjusted the scale for self-administered application and inquired participants from two ongoing studies in Germany, 'STAAB' (Würzburg) and 'BiDirect' (Münster), both recruiting subjects from the general population across a wide age range (STAAB: 30-79 years, BiDirect: 35-65 years). To assess reliability, agreement of self-assessment with proxy-assessment by partners was measured via intraclass correlation coefficient (ICC) over the FAST score. Construct validity was estimated by conducting correlations with validated scales of depression (PHQ-9), anxiety (GAD-7), and health-related quality of life (SF-12) and regression analyses using these scales besides potentially disabling comorbidities (e.g. Chronic Back Pain (CBP)). Results: Participants (n=54) had a median age of 57.0 years (quartiles: 49.8, 65.3), 46.3% were female. Reliability was moderate: ICC 0.50 (95% CI 0.46-0.54). The FAST score significantly correlated with PHQ-9, GAD-7, and the mental sub-scale of SF-12. In univariable linear regression, all three scales and chronic back pain explained variance of the FAST score. In multivariable analysis, only CBP and the SF-12 remained significant predictors. Conclusion: The German self-administered version of the FAST yielded moderate psychometric properties in this pilot study, indicating its applicability to assess functional impairment in the general population

    In-vivo evidence that high mobility group box 1 exerts deleterious effects in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model and Parkinson's disease which can be attenuated by glycyrrhizin

    Get PDF
    Acknowledgements Samples were obtained from the Neuro Biobank of the University of Tuebingen, Germany (http://www.hih-tuebingen.de/nd/biobank/for-researchers/). This biobank is supported by the Hertie Institute and the DZNE. We are grateful to the staff of the Medical Research Facility for their help with the animal care. We thank Dr. Kinnari Sathe for her help with the experiments. We thank Claire A. Walker for assisting with western blot analysis. This study was supported by: Tenovus Scotland, Parkinson's Disease Foundation, Royal Society 2006/R1, NHS Endowment 14-42, and Wellcome Trust WT080782MF.Peer reviewedPublisher PD

    MPP+-induced toxicity in the presence of dopamine is mediated by COX-2 through oxidative stress

    Get PDF
    Accumulating evidence suggests that endogenous dopamine may act as a neurotoxin and thereby participate in the pathophysiology of Parkinson’s disease (PD). Cyclooxygenase-2 (COX-2) has been implicated in the pathogenesis of PD due to its ability to generate reactive oxygen species (ROS). Inhibition of COX-2 leads to neuroprotection by preventing the formation of dopamine-quinone. In this study, we examined whether dopamine mediates 1-methyl-4-phenylpyridinium (MPP+)-induced toxicity in primary ventral mesencephalic (VM) neurons, an in vitro model of PD, and if so, whether the protective effects of COX-2 inhibitors on dopamine mediated MPP+-induced VM neurotoxicity and VM dopaminergic cell apoptosis result from the reduction of ROS. Reserpine, a dopamine-depleting agent, significantly reduced VM neurotoxicity induced by MPP+, whereas dopamine had an additive effect on MPP+-induced VM neurotoxicity and VM dopaminergic cell apoptosis. However, inhibition of COX-2 by a selective COX-2 inhibitor (DFU) or ibuprofen significantly attenuated MPP+-induced VM cell toxicity and VM dopaminergic cell apoptosis, which was accompanied by a decrease in ROS production in VM dopaminergic neurons. These results suggest that dopamine itself mediates MPP+-induced VM neurotoxicity and VM dopaminergic cell apoptosis in the presence of COX-2

    DNA methylation of FKBP5 and response to exposure-based psychological therapy

    Get PDF
    Differential DNA methylation of the HPA-axis related gene FKBP5 has recently been shown to be associated with varying response to environmental influences, and may play a role in how well people respond to psychological treatments. Participants (n=111) received exposure-based CBT for agoraphobia with or without panic disorder, or specific phobias. Percentage DNA methylation levels were measured for the promoter region and intron 7 of FKBP5. The association between percentage reduction in clinical severity and change in DNA methylation was tested using linear mixed models. The effect of genotype (rs1360780) was tested by the inclusion of an interaction term. The association between change in DNA methylation and FKBP5 expression was examined. Change in percentage DNA methylation at one CpG site of intron 7 was associated with percentage reduction in severity (β=-4.26, p=3.90x10-4), where a decrease in DNA methylation was associated with greater response to therapy. An interaction was detected between rs1360780 and changes in DNA methylation in the promoter region of FKBP5 on treatment outcome (p=0.045), but did not survive correction for multiple testing. Changes in DNA methylation were not associated with FKBP5 expression. Decreasing DNA methylation at one CpG site of intron 7 of FKBP5 was strongly associated with decreasing anxiety severity following exposure-based CBT. In addition, there was suggestive evidence that allele-specific methylation at the promoter region may also be associated with treatment response. The results of this study add to the growing literature demonstrating the role of biological processes such as DNA methylation in response to environmental influences

    Separate and combined effects of genetic variants and pre-treatment whole blood gene expression on response to exposure-based cognitive behavioural therapy for anxiety disorders

    Get PDF
    Objectives: Exposure-based cognitive behavioural therapy (eCBT) is an effective treatment for anxiety disorders. Response varies between individuals. Gene expression integrates genetic and environmental influences. We analysed the effect of gene expression and genetic markers separately and together on treatment response. Methods: Adult participants (n ≤ 181) diagnosed with panic disorder or a specific phobia underwent eCBT as part of standard care. Percentage decrease in the Clinical Global Impression severity rating was assessed across treatment, and between baseline and a 6-month follow-up. Associations with treatment response were assessed using expression data from 3,233 probes, and expression profiles clustered in a data- and literature-driven manner. A total of 3,343,497 genetic variants were used to predict treatment response alone and combined in polygenic risk scores. Genotype and expression data were combined in expression quantitative trait loci (eQTL) analyses. Results: Expression levels were not associated with either treatment phenotype in any analysis. A total of 1,492 eQTLs were identified with q < 0.05, but interactions between genetic variants and treatment response did not affect expression levels significantly. Genetic variants did not significantly predict treatment response alone or in polygenic risk scores. Conclusions: We assessed gene expression alone and alongside genetic variants. No associations with treatment outcome were identified. Future studies require larger sample sizes to discover associations
    corecore