80 research outputs found

    The effect of starch-based biomaterials on leukocyte adhesion and activation in vitro

    Get PDF
    Leukocyte adhesion to biomaterials has long been recognised as a key element to determine their inflammatory potential. Results regarding leukocyte adhesion and activation are contradictory in some aspects of the material’s effect in determining these events. It is clear that together with the wettability or hydrophilicity/hydrophobicity, the roughness of a substrate has a major effect on leukocyte adhesion. Both the chemical and physical properties of a material influence the adsorbed proteins layer which in turn determines the adhesion of cells. In this work polymorphonuclear (PMN) cells and a mixed population of monocytes/macrophages and lymphocytes (mononuclear cells) were cultured separately with a range of starch-based materials and composites with hydroxyapatite (HA). A combination of both reflected light microscopy and scanning electron microscopy (SEM) was used in order to study the leukocyte morphology. The quantification of the enzyme lactate dehydrogenase (LDH) was used to determine the number of viable cells adhered to the polymers. Cell adhesion and activation was characterised by immunocytochemistry based on the expression of several adhesion molecules, crucial in the progress of an inflammatory response. This work supports previous in vitro studies with PMN and monocytes/macrophages, which demonstrated that there are several properties of the materials that can influence and determine their biological response. From our study, monocytes/macrophages and lymphocytes adhere in similar amounts to more hydrophobic (SPCL) and to moderately hydrophilic (SEVA-C) surfaces and do not preferentially adhere to rougher substrates (SCA). Contrarily, more hydrophilic surfaces (SCA) induced higher PMN adhesion and lower activation. In addition, the hydroxyapatite reinforcement induces changes in cell behaviour for some materials but not for others. The observed response to starch-based biodegradable polymers was not significantly different from the control materials. Thus, the results reported herein indicate the low potential of the starch-based biodegradable polymers to induce inflammation especially the HA reinforced composite materials

    Effect of surface roughness of biomaterials on Staphylococcus epidermidis adhesion

    Get PDF
    Background: Implant-related infections are caused by adhesion of bacteria to the surface of biomaterials. In this in vitro research, we evaluated the ability of Staphylococcus epidermidis (ATCC35984) to adhere to the surface of solid biomaterials at different levels of roughness below 30 nm Ra and investigated the minimum level of roughness required to promote bacterial adhesion on five kinds of biomaterials: oxidized zirconium-niobium alloy (Oxinium), cobalt-chromium-molybdenum alloy (Co-Cr-Mo), titanium alloy (Ti-6Al-4 V), commercially pure titanium (Cp-Ti) and stainless steel (SUS316L), samples of which were categorized into a fine group and a coarse group according to surface roughness. The test specimens were physically analyzed and the viable bacterial density of the adhered bacteria was quantitatively determined (n = 20).Results: The amount of bacteria that adhered to the biomaterials in the coarse group was higher than those in the fine group. Oxinium, Ti-6Al-4 V and SUS316L in particular demonstrated statistically significant differences between the two groups (P < 0.05). Of the materials, the Co-Cr-Mo specimens exhibited significantly lower amounts of adhered bacteria than the Ti-6Al-4 V, Cp-Ti and SUS316L specimens in the fine group. Similarly, the Co-Cr-Mo specimens in the coarse group exhibited significantly lower values than the other four materials.Conclusions: These results suggest that minimum level of roughness affecting initial bacterial adherence activity differs according to the type of biomaterial used, and that even a surface roughness of below 30 nm Ra in Oxinium, Ti-6Al-4 V and SUS316L can promote bacterial adhesion. Relative hydrophobic Co-Cr-Mo surfaces were less susceptible to bacterial adherence
    • …
    corecore