162 research outputs found

    Gerberasta on löydetty uusia puolustusaineita

    Get PDF
    Kasvien tuottamien kemiallisten yhdisteiden kirjo on laaja. Suhteessa tähän monimuotoisuuteen vain muutamien yhdisteiden biokemiallinen synteesireitti tunnetaan. Leikko- ja ruukkukasvina kasvatettava sädelatva eli gerbera (Gerbera hybrida, Asteraceae) tuottaa maanpäällisiin osiinsa kahta glukosidista karvasainetta, gerberiiniä ja parasorbosidia. Glukosidit torjuvat hyönteistuhoilta, ja sieniperäisten taudinaiheuttajien läsnäollessa ne hajotetaan aglykoneiksi joilla on sienitauteja torjuva vaikutus.vo

    Genetically engineered orange petunias on the market

    Get PDF
    Main conclusion Unauthorized genetically engineered orange petunias were found on the market. Genetic engineering of petunia was shown to lead to novel flower color some 20 years ago. Here we show that petunia lines with orange flowers, generated for scientific purposes, apparently found their way to petunia breeding programmes, intentionally or unintentionally. Today they are widely available, but have not been registered for commerce

    Tetraketide alpha-pyrone reductases in sporopollenin synthesis pathway in Gerbera hybrida : diversification of the minor function

    Get PDF
    The structurally robust biopolymer sporopollenin is the major constituent of the exine layer of pollen wall and plays a vital role in plant reproductive success. The sporopollenin precursors are synthesized through an ancient polyketide biosynthetic pathway consisting of a series of anther-specific enzymes that are widely present in all land plant lineages. Tetraketide alpha-pyrone reductase 1 (TKPR1) and TKPR2 are two reductases catalyzing the final reduction of the carbonyl group of the polyketide synthase-synthesized tetraketide intermediates to hydroxylated alpha-pyrone compounds, important precursors of sporopollenin. In contrast to the functional conservation of many sporopollenin biosynthesis associated genes confirmed in diverse plant species, TKPR2's role has been addressed only in Arabidopsis, where it plays a minor role in sporopollenin biosynthesis. We identified in gerbera two non-anther-specific orthologues of AtTKPR2, Gerbera reductase 1 (GRED1) and GRED2. Their dramatically expanded expression pattern implies involvement in pathways outside of the sporopollenin pathway. In this study, we show that GRED1 and GRED2 are still involved in sporopollenin biosynthesis with a similar secondary role as AtTKPR2 in Arabidopsis. We further show that this secondary role does not relate to the promoter of the gene, AtTKPR2 cannot rescue pollen development in Arabidopsis even when controlled by the AtTKPR1 promoter. We also identified the gerbera orthologue of AtTKPR1, GTKPR1, and characterized its crucial role in gerbera pollen development. GTKPR1 is the predominant TKPR in gerbera pollen wall formation, in contrast to the minor roles GRED1 and GRED2. GTKPR1 is in fact an excellent target for engineering male-sterile gerbera cultivars in horticultural plant breeding.Peer reviewe

    Muuntogeeniset kasvit ja tutkijoiden motiivit

    Get PDF

    De novo transcriptome assembly of Conium maculatum L. to identify candidate genes for coniine biosynthesis

    Get PDF
    Poison hemlock (Conium maculatum L.) is a notorious weed containing the potent alkaloid coniine. Only some of the enzymes in the coniine biosynthesis have so far been characterized. Here, we utilize the next-generation RNA sequencing approach to report the first-ever transcriptome sequencing of five organs of poison hemlock: developing fruit, flower, root, leaf, and stem. Using a de novo assembly approach, we derived a transcriptome assembly containing 123,240 transcripts. The assembly is deemed high quality, representing over 88% of the near-universal ortholog genes of the Eudicots clade. Nearly 80% of the transcripts were functionally annotated using a combination of three approaches. The current study focuses on describing the coniine pathway by identifying in silico transcript candidates for polyketide reductase, l-alanine:5-keto-octanal aminotransferase, gamma-coniceine reductase, and S-adenosyl-l-methionine:coniine methyltransferase. In vitro testing will be needed to confirm the assigned functions of the selected candidates.Peer reviewe

    Petunia dihydroflavonol 4-reductase is only a few amino acids away from producing orange pelargonidin-based anthocyanins

    Get PDF
    Anthocyanins are responsible for the color spectrum of both ornamental and natural flowers. However, not all plant species produce all colors. For example, roses are not blue because they do not naturally possess a hydroxylase that opens the pathway for delphinidin and its derivatives. It is more intriguing why some plants do not carry orange or scarlet red flowers with anthocyanins based on pelargonidin, because the precursor for these anthocyanins should be available if anthocyanins are made at all. The key to this is the substrate specificity of dihydroflavonol 4-reductase (DFR), an enzyme located at the branch point between flavonols and anthocyanins. The most common example is petunia, which does not bear orange flowers unless the enzyme is complemented by biotechnology. We changed a few amino acids in the active site of the enzyme and showed that the mutated petunia DFR started to favor dihydrokaempferol, the precursor to orange pelargonidin, in vitro. When transferred to petunia, it produced an orange hue and dramatically more pelargonidin-based anthocyanins in the flowers

    Living in Rural New England Amplifies the Risk of Depression in Patients with HIV

    Get PDF
    The importance of depression as a complication of HIV infection is increasingly understood, and people living in rural areas are at increased risk for depression. However, it is not known whether living in rural areas amplifies the risk of depression in patients with HIV. We compared the prevalence of depression between rural and metropolitan HIV patients seen at the Dartmouth-Hitchcock HIV Program in a retrospective cohort study. Using the validated Rural-Urban Commuting Area Score, we categorized patients as living in small town/rural areas, micropolitan or metropolitan towns. Then, using a multivariate logistic regression model to adjust for demographic factors that differed between rural and metropolitan patients, we estimated the impact of living in rural areas on the odds of depression

    Within leaf variation is the largest source of variation in agroinfiltration of Nicotiana benthamiana

    Get PDF
    Abstract Background: Transient gene expression utilizing syringe agroinfiltration offers a simple and efficient technique for different transgenic applications. Leaves of Nicotiana benthamiana show reliable and high transformation efficiency, but in quantitative assays also a certain degree of variation. We used a nested design in our agroinfiltration experiments to dissect the sources of this variation. Results: An intron containing firefly luciferase gene was used as a reporter for agroinfiltration. A number of 6 week old tobacco plants were infiltrated for their top leaves, several samples were punched from the leaves after 2 days of transient expression, and protein extracts from the samples were repeatedly measured for luciferase activity. Interestingly, most of the variation was due to differences between the sampling spots in the leaves, the next important source being the different leaves on each plant. Variation between similar experiments, between plants and between repetitive measurements of the extracts could be easily minimized. Conclusions: Efforts and expenditure of agroinfiltration experiments can be optimized when sources of variation are known. In summary, infiltrate more plants but less leaves, sample more positions on the leaf but run only few technical replicates.Peer reviewe

    A Gene Encoding Scots Pine Antimicrobial Protein Sp-AMP2 (PR-19) Confers Increased Tolerance against Botrytis cinerea in Transgenic Tobacco

    Get PDF
    Both the establishment of sustainable forestry practices and the improvement of commercially grown trees require better understanding of mechanisms used by forest trees to combat microbial pathogens. We investigated the contribution of a gene encoding Scots pine (Pinus sylvestris L.) antimicrobial protein Sp-AMP2 (PR-19) to the host defenses to evaluate the potential of Sp-AMP genes as molecular markers for resistance breeding. We developed transgenic tobacco plants expressing the Sp-AMP2 gene. Transgenic plants showed a reduction in the size of lesions caused by the necrotrophic pathogen Botrytis cinerea. In order to investigate Sp-AMP2 gene expression level, four transgenic lines were tested in comparison to control and non-transgenic plants. No Sp-AMP2 transcripts were observed in any of the control and non-transgenic plants tested. The transcript of Sp-AMP2 was abundantly present in all transgenic lines. Sp-AMP2 was induced highly in response to the B. cinerea infection at 3 d.p.i. This study provides an insight into the role of Sp-AMP2 and its functional and ecological significance in the regulation of plant–pathogen interactions.Peer reviewe
    corecore