68 research outputs found

    Site-Controlled Epitaxy and Fundamental Properties of InAs Quantum Dot Chains

    Get PDF
    Self-assembled InAs/GaAs quantum dots (QD) are artificial atoms which exhibit extremely high optical and structural quality and enable tailoring of the quantum confinement by adjusting their size, shape, and chemical composition. However, a disadvantage of the self-assembled formation process is that the QDs are randomly located on the GaAs surface. The ability to determine the positions of the QDs at the moment of nucleation, i.e. site-controlled growth, is essential for the new generation of photonic applications including single- and entangled-photon sources and nanophotonic integrated circuits. The purpose of this thesis is to introduce a new nanomaterial system composed of site-controlled InAs quantum dot chains (QDC) grown by molecular beam epitaxy in nanoimprint lithography prepared grooves. A thorough investigation of the structural and optical properties of QDCs is also presented. The thesis demonstrates that, regardless of the inherent anisotropy of the GaAs(100) surface, QDCs having similar density, size, and emission energy can be grown simultaneously on nanopatterns with different orientations by carefully selecting the growth parameters. However, the in-plane optical polarization of the spontaneous emission from the QDCs depends on their orientation. In more general perspective, this thesis reveals that the nanopattern on which the site-controlled QDs are grown has a strong influence on their morphological properties, including shape, size, strain profile, and composition profile. These properties are strongly cross-correlated and they all influence the electronic and optical characteristics of the QDs. For example, the growth of QDs in the grooves increases their oscillator strength for the vertically polarized spontaneous emission, which is the polarization component that can be coupled to surface plasmons in a metal film. This polarization property accompanied by the possibility of deterministic lateral positioning makes the site-controlled QDCs potential building blocks for plasmonic and nanophotonic waveguides

    Chiral near-field manipulation in Au-GaAs hybrid hexagonal nanowires

    Get PDF
    We demonstrate the control of enhanced chiral field distribution at the surface of hybrid metallo-dielectric nanostructures composed of self-assembled vertical hexagonal GaAs-based nanowires having three of the six sidewalls covered with Au. We show that weakly-guided modes of vertical GaAs nanowires can generate regions of high optical chirality that are further enhanced by the break of the symmetry introduced by the gold layer. Changing the angle of incidence of a linearly polarized plane wave it is possible to tailor and optimize the maps of the optical chirality in proximity of the gold plated walls. The low cost feasibility of the sample combined to the simple control by using linearly polarized light and the easy positioning of chiral molecules by functionalization of the gold plates make our proposed scheme very promising for enhanced enantioselective spectroscopy applications

    Intracavity double diode structures with GaInP barrier layers for thermophotonic cooling

    Get PDF
    Optical cooling of semiconductors has recently been demonstrated both for optically pumped CdS nanobelts and for electrically injected GaInAsSb LEDs at very low powers. To enable cooling at larger power and to understand and overcome the main obstacles in optical cooling of conventional semiconductor structures, we study thermophotonic (TPX) heat transport in cavity coupled light emitters. Our structures consist of a double heterojunction (DHJ) LED with a GaAs active layer and a corresponding DHJ or a p-n-homojunction photodiode, enclosed within a single semiconductor cavity to eliminate the light extraction challenges. Our presently studied double diode structures (DDS) use GaInP barriers around the GaAs active layer instead of the AlGaAs barriers used in our previous structures. We characterize our updated double diode structures by four point probe IV- measurements and measure how the material modifications affect the recombination parameters and coupling quantum efficiencies in the structures. The coupling quantum efficiency of the new devices with InGaP barrier layers is found to be approximately 10 % larger than for the structures with AlGaAs barriers at the point of maximum efficiency.Peer reviewe

    Effects of Gender on Basic Numerical and Arithmetic Skills : Pilot Data From Third to Ninth Grade for a Large-Scale Online Dyscalculia Screener

    Get PDF
    In this study, we analyzed the development and effects of gender on basic number skills from third to ninth grade in Finland. Because the international comparison studies have shown slightly different developmental trends in mathematical attainment for different language groups in Finland, we added the language of education as a variable in our analysis. Participants were 4,265 students from third to ninth grade in Finland, representing students in two national languages (Finnish, n = 2,833, and Swedish, n = 1,432). Confirmatory factor analyses showed that the subtasks in the dyscalculia screener formed two separate factors, namely, number-processing skills and arithmetic fluency. We found a linear development trend across age cohorts in both the factors. Reliability and validity evidence of the measures supported the use of these tasks in the whole age group from 9 to15 years. In this sample, there was an increasing gender difference in favor of girls and Swedish-speaking students by grade levels in number-processing skills. At the same time, boys showed a better performance and a larger variance in tasks measuring arithmetic fluency. The results indicate that the gender ratio within the group with mathematical learning disabilities depends directly on tasks used to measure their basic number skills.Peer reviewe

    Effect of Partial Crystallization on the Structural and Luminescence Properties of Er3+-Doped Phosphate Glasses

    Get PDF
    Er-doped phosphate glass ceramics were fabricated by melt-quenching technique followed by a heat treatment. The effect of the crystallization on the structural and luminescence properties of phosphate glasses containing Al2O3, TiO2, and ZnO was investigated. Themorphological and structural properties of the glass ceramics were characterized by Field Emission-Scanning Electron Microscopy (FE-SEM), X-ray Diffraction (XRD), and micro-Raman spectroscopy. Additionally, the luminescence spectra and the lifetime values were measured in order to study the influence of the crystallization on the spectroscopic properties of the glasses. The volume ratio between the crystal and the glassy phases increased along with the duration of the heat treatment. The crystallization of the glass ceramics was confirmed by the presence of sharp peaks in the XRD patterns and different crystal phases were identified depending on the glass composition. Sr(PO3)2 crystals were found to precipitate in all the investigated glasses. As evidenced by the spectroscopic properties, the site of the Er3+ ions was not strongly affected by the heat treatment except for the fully crystallized glass ceramic which does not contain Al2O3, TiO2, and ZnO. An increase of the lifetime was also observed after the heat treatment of this glass. Therefore, we suspect that the Er3+ ions are incorporated in the precipitated crystals only in this glass ceramic

    Effects of Gender on Basic Numerical and Arithmetic Skills: Pilot Data From Third to Ninth Grade for a Large-Scale Online Dyscalculia Screener

    Get PDF
    In this study, we analyzed the development and effects of gender on basic number skills from third to ninth grade in Finland. Because the international comparison studies have shown slightly different developmental trends in mathematical attainment for different language groups in Finland, we added the language of education as a variable in our analysis. Participants were 4,265 students from third to ninth grade in Finland, representing students in two national languages (Finnish, n = 2,833, and Swedish, n = 1,432). Confirmatory factor analyses showed that the subtasks in the dyscalculia screener formed two separate factors, namely, number-processing skills and arithmetic fluency. We found a linear development trend across age cohorts in both the factors. Reliability and validity evidence of the measures supported the use of these tasks in the whole age group from 9 to15 years. In this sample, there was an increasing gender difference in favor of girls and Swedish-speaking students by grade levels in number-processing skills. At the same time, boys showed a better performance and a larger variance in tasks measuring arithmetic fluency. The results indicate that the gender ratio within the group with mathematical learning disabilities depends directly on tasks used to measure their basic number skills.</p

    Epitaxial lift-off process for GaAs solar cells controlled by InGaAs internal sacrificial stressor layers and a PMMA surface stressor

    Get PDF
    Epitaxial lift-off (ELO) techniques enable the development of thin-film III–V solar cell devices that are flexible and lightweight. To this end, we report an ELO process employing an internal sacrificial stressor layer (ISSL) and a surface polymer (PMMA) stressor layer. The combined action enhances the lateral etching rate and promotes a more controllable release process. The ISSL consists of quantum well-like GaInAs heterostructures that enable an accurate control of the stress required to enhance the lateral etching of the sacrificial layer, and hence the release of the thin film. More specifically, the use of the ISSL results in about 5-fold faster etch rate of the AlAs sacrificial layer. The ISSL layers can be etched away after the lift-off. Likewise, the PMMA surface stressor, which serves also as a sacrificial intermediate transfer layer, can be easily removed. The proof-of-concept device demonstration of the enhanced ELO technique was made by fabricating single-junction GaAs solar cells. The solar cell performance was evaluated under AM1.5d illumination and by external quantum efficiency measurements. Modelling based analysis shows that although the GaAs solar cell would require improvement of the front contact, yet the novel release process was successfully validated.publishedVersionPeer reviewe

    Strain-Free GaSb Quantum Dots as Single-Photon Sources in the Telecom S-Band

    Get PDF
    Generating single photons in the telecommunication wavelength range from semiconductor quantum dots (QDs) and interfacing them with spins of electrons or holes is of high interest in recent years, with research mainly focusing on indium-based QDs. However, there is not much data on the optical and spin properties of gallium antimonide (GaSb) QDs, despite it being a physically rich system with an indirect to direct bandgap crossover in the telecom wavelength range. This work investigates the (quantum-) optical properties of GaSb QDs, which are fabricated by filling droplet-etched nanoholes in an aluminum gallium antimonide (AlGaSb) matrix. Photoluminescence (PL) features from isolated and highly symmetric QDs are observed that exhibit narrow linewidth in the telecom S-band and show an excitonic fine structure splitting of up to (Formula presented.) µeV. Moreover, time-resolved measurements of the decay characteristics of an exciton are performed and the second-order photon autocorrelation function of the charge complex is measured to (Formula presented.), revealing clear antibunching and thus proving the capability of this material platform to generate non-classical light.Peer reviewe
    corecore