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Abstract 
Self-assembled InAs/GaAs quantum dots (QD) are artificial atoms which exhibit extremely 

high optical and structural quality and enable tailoring of the quantum confinement by adjusting 

their size, shape, and chemical composition. However, a disadvantage of the self-assembled 

formation process is that the QDs are randomly located on the GaAs surface. The ability to 

determine the positions of the QDs at the moment of nucleation, i.e. site-controlled growth, is 

essential for the new generation of photonic applications including single- and entangled-

photon sources and nanophotonic integrated circuits. The purpose of this thesis is to introduce a 

new nanomaterial system composed of site-controlled InAs quantum dot chains (QDC) grown 

by molecular beam epitaxy in nanoimprint lithography prepared grooves. A thorough 

investigation of the structural and optical properties of QDCs is also presented.  

The thesis demonstrates that, regardless of the inherent anisotropy of the GaAs(100) surface, 

QDCs having similar density, size, and emission energy can be grown simultaneously on 

nanopatterns with different orientations by carefully selecting the growth parameters. However, 

the in-plane optical polarization of the spontaneous emission from the QDCs depends on their 

orientation. In more general perspective, this thesis reveals that the nanopattern on which the 

site-controlled QDs are grown has a strong influence on their morphological properties, 

including shape, size, strain profile, and composition profile. These properties are strongly 

cross-correlated and they all influence the electronic and optical characteristics of the QDs. For 

example, the growth of QDs in the grooves increases their oscillator strength for the vertically 

polarized spontaneous emission, which is the polarization component that can be coupled to 

surface plasmons in a metal film. This polarization property accompanied by the possibility of 

deterministic lateral positioning makes the site-controlled QDCs potential building blocks for 

plasmonic and nanophotonic waveguides. 
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Chapter 1 

1 Introduction 

Semiconductor quantum dots (QD), also known as artificial atoms, are nanoclusters that are 

usually composed of 104–105 atoms. Although the size of the QDs is some orders of magnitude 

larger than, for example, the radius of a carbon atom, they are small enough to provide quantum 

confinement of charge carriers in all three spatial dimensions. This special construction allows 

tailoring of quantum states of the QDs by adjusting their size, shape, and composition.  

The most widely explored type of semiconductor QDs is coherently strained epitaxial QDs. 

Although the first observation of the strain-driven InAs clustering in the InAs/GaAs material 

system was observed already in 1985 [1], the pioneering work on these so-called self-assembled 

QDs (SAQD) was performed in the 90s when it was demonstrated that deposition of a thin layer 

of InAs on GaAs surface enables a controllable, spontaneous formation of nanoscale islands due 

to the lattice mismatch between the two materials [2–5]. Since then, extensive materials 

research has been carried out on this material system. These 20 years of basic research has laid 

the foundation for a high-quality photonic material system that provides seamless integration to 

thin film heterostructures devices. Consequently, research groups around the world have 

presented a large number of QD-based optoelectronics devices including laser diodes, 

photodetectors, and solar cells [5,6]. Although companies providing QD-based devices exist, 

the commercial breakthrough of semiconductor QDs is yet to happen. This is largely due to the 

fact that QDs have not been able to compete with quantum well (QW) heterostructures in the 

market of traditional optoelectronic devices. 
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Yet the full benefits of semiconductor QD systems are expected to lead to a new class of 

devices where they provide unmatched features. This new generation of applications includes, 

for example, single- and entangled-photon [7] sources, nanophotonic integrated circuits [8], and 

nanophotonic waveguides [9], as well as photonic crystal lasers having ultra-low lasing 

threshold [10]. All of these devices rely on the unique excitonic properties of semiconductor 

QDs. The exploitation of the novel quantum dot based photonic structures in quantum 

computing and all-optical logics and data transfer are considered as a potential solution for the 

extension of the Moore’s law as well as solving the chip-to-chip interconnect bottleneck, which 

are the current challenges in silicon-based information technology. However, the practicality of 

SAQDs is limited because most these emerging applications require a precise positioning of the 

QD with respect to the cavity, waveguide or other device structure, which has created a demand 

for the controlled lateral positioning of QDs. 

Controlling the positions of semiconductor QDs at the moment of nucleation, also known as 

site-controlled QD growth, is commonly based on a combination of a nanopatterning technique 

and epitaxial growth. The nanopatterns are fabricated by lithography-based methods including 

electron beam lithography (EBL), focused ion beam lithography (FIB), laser interference 

lithography (LIL), and nanoimprint lithography (NIL). The epitaxial techniques include 

molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD). So far, 

the most successful varieties are the MBE growth of QDs on shallow patterned GaAs(100) and 

the MOCVD growth on GaAs(111)B surface with selectively-etched (111)A-facetted pyramidal 

pits. Both methods enable fabrication of site-controlled QDs having high optical quality. 

However, their difference is in the selectivity of the growth. The MOCVD method is extremely 

selective: growth takes place only inside the pyramidal pit and it is completely terminated once 

the pit is filled [11]. The MBE method is less selective, but it enables also planar growth which 

is essential for the device integration.  

This thesis focuses on the fabrication of site-controlled QDs by a combination of NIL and MBE. 

In particular, it presents a simultaneous formation of quantum dot chains (QDCs) having 

different orientations by MBE growth on NIL prepared nanoscale groove patterns. The purpose 

of the scientific articles that form this thesis is to present this new nanomaterial system and 

investigate its structural and electronic properties. The potential applications of the site-

controlled QDCs include nanophotonic waveguides [9] and QD-based gain media for 
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subwavelength plasmonic devices [12,13]. A more general motivation for this thesis is to 

provide new insight into the site-controlled QD growth process and its influence on the QD 

properties, which are still far away from being fully understood. 

The work presented in this thesis has been conducted in parallel with another branch of QD 

research currently ongoing at Optoelectronics Research Centre (ORC), which focuses on 

formation of arrays of single site-controlled InAs QDs [14–17]. 

This thesis is organized as follows. Chapter 2 introduces the MBE growth process including 

growth of planar layers and formation of SAQDs. Chapter 3 covers the basic principle of site-

controlled QD growth, which is described by presenting three different experimental methods 

for controlling the nucleation sites of the QDs. Chapter 4 presents the fundamental 

morphological properties of semiconductor QDs and explores the influence of the 

nanopatterned growth surface on them. Chapter 4 includes an experimental analysis of QD 

morphology and strain accompanied with theoretical strain calculations. The morphology of the 

QD determines its electronic properties which are covered in Chapter 5 presenting quantum 

mechanical calculations of the electron and hole states in site-controlled QDs. Chapter 6 focuses 

on the photoluminescence properties, such as emission energy and polarization, of site-

controlled QDs and presents two methods for modifying them. The concluding remarks and 

outlook are combined in Chapter 7.  
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Chapter 2 

2 Molecular Beam Epitaxy of 

Lattice-Mismatched Materials 

Molecular beam epitaxy, invented in the 1960s at the Bell Telephone Laboratories by J.R. 

Arthur and Alfred Y. Cho, is a method for growing epitaxial metal, insulator and semiconductor 

thin films. The thin films are grown in ultra-high vacuum (UHV; i.e. a pressure of the residual 

gas is less than 10-9 mbar) chambers on single crystal substrates by a flux of atomic or 

molecular beams of constituent elements. The semiconductor materials grown by MBE range 

from elemental silicon (Si) and germanium (Ge) crystals to III-V and II-VI semiconductors, 

which are stoichiometric compounds of elements from two different groups of the periodic 

system. The atomic and molecular beams are produced by heating extremely pure elemental 

materials in effusion cells. The MBE growth process is controlled by adjusting the fluxes and 

the temperature of the substrate while the relative flux densities of the constituent atoms define 

the composition of the grown material. In appropriate growth conditions, the atoms or 

molecules of the beam stick to the surface of the substrate and the newly grown epitaxial film 

copies the crystal structure of the underlying layer (the substrate). This process is referred to as 

epitaxial growth. Typical growth rates in MBE are 0.5–3 μm/h [18–20]. 

In the MBE growth process atomic or molecular source materials are physisorbed or 

chemisorbed on the substrate surface on which they may (i) migrate on energetically favorable 

lattice cites, (ii) gather at surface contaminations, (iii) form agglomerations of atoms of the 

same type (e.g. droplet formation), and (iv) migrate on the surface and eventually evaporate 
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[19]. Typically process (i) is essential for the formation of an epitaxially grown layer, but the 

energetics of the adatoms on the growth surface depend strongly on the materials and the 

growth conditions. Consequently, the epitaxial growth of material on a substrate by MBE may 

proceed by several different modes. The three primary modes are known as Frank-van der 

Merve, Volmer-Weber, and Stranski-Krastanov. Frank-van der Merve is a pure two-

dimensional layer-by-layer growth mode which is usually the most desirable mode for the 

growth of planar layers. Volmer-Weber is a pure three-dimensional island growth mode that 

leads to clustering of the deposited material. The third primary growth mode, Stranski-

Krastanow, is a three-dimensional mode which initiates as layer-by-layer growth that is 

followed by subsequent island formation [18]. It should be noted that planar growth of smooth 

films cannot be obtained by Volmer-Weber and Stranski-Krastanow modes, but they are 

commonly used for fabrication of QDs and other low-dimensional nanostructures [21]. The 

samples investigated in [P1–P7] contain planar layers grown by Frank-van der Merve mode and 

QDs grown by Stranski-Krastanov mode. The principles of these two growth modes will be 

discussed in detail in the following. 

 

Figure 2.1. MBE grower operating a VG V90 MBE system used in the course of this thesis 

work. The V90 system is equipped with aluminium, indium, and gallium effusion cells as group 

III sources and phosphorus and arsenic crackers as group V sources. 
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2.1 Frank-van der Merve growth of strained layers 

If the equilibrium lattice constants of the substrate and the deposited material are equal, the 

epitaxial grown layer will be lattice-matched with respect to the substrate. In the case of lattice-

matched growth, the epitaxial layer will maintain its natural atomic spacing in both vertical and 

horizontal direction and there is no build-up of elastic strain. This is the case, for example, in 

homoepitaxial growth of GaAs on a GaAs substrate. 

If the equilibrium lattice constant of the epitaxially grown material is smaller or larger than that 

of the substrate, it is said to be lattice-mismatched. The lattice mismatch is commonly defined 

as  

 ,0

s

s

a
aa

f
−

=     (2.1) 

where a0 and as are the equilibrium lattice constants of the epitaxially grown layer and the 

substrate, respectively. Figure 2.2 illustrates the lattice-mismatched growth of Material 2 on a 

substrate composed of Material 1. Material 2 has a larger lattice constant than Material 1 ( i.e. 

a0 > as), but the epitaxially grown layer compresses in the direction of the growth plane in order 

to copy the lateral lattice spacing of the substrate. This gives rise to in-plane elastic strain 

defined as 

,
0

0||
|| a

aa −
=ε     (2.2) 

where ||a  is the in-plane lattice constant of the layer. The out-of-plane lattice constant of the 

epitaxially grown material expands in order to accommodate the misfit. The resulting out-of-

plane strain is defined as 

 ,2 ||
33

13

0

0 εε
c
c

a
aa

−=
−

= ⊥
⊥    (2.3) 

where ⊥a is the out-of-plane lattice constant of the layer and c13 and c13 are elastic constants. 

Material 1 in Figure 2.2 is said to be compressively-strained (CS) because its unit cell has to 
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compress laterally in order to adapt to the lattice spacing of Material 1, whereas tensile strain 

(TS) arises when a0<as . This so-called pseudomorphic layer-by-layer growth causes build-up of 

elastic strain energy with increasing layer thickness. Eventually, at the so-called critical layer 

thickness, the strain energy is so large that it causes formation of misfit dislocations (MD) at the 

substrate-layer interface. At this point, the layer is said to be metamorphic. Theoretically, the 

value of the critical thickness is determined by the lattice mismatch and elastic properties of the 

particular material system [22], but in practice it is also affected by the growth conditions. 

Pseudomorphic layer-by-layer growth, followed by plastic strain relaxation and MD formation 

once the critical layer thickness is exceeded, is the typical growth mode for example for 

moderately mismatched (f around 0 to 2%) compositions of GaInP and InGaAs grown on GaAs 

[23]. As the mismatch increases the three-dimensional Stranski-Krastanov growth becomes the 

most energetically favorable process of strain relaxation.  

(a) (b) (c) (d)

Material 2

Material 1

 

Figure 2.2. Illustration of lattice-mismatched layer-by-layer growth. (a) shows equilibrium 

crystal structures of Material 1 and Material 2. (b) and (c) represent pseudomorphic growth of 

Material 2 on Material 1 with the thickness of the epitaxially grown layer approaching the 

critical value. Finally, in (d) the layer thickness has exceeded the critical value for MD 

formation and the epilayer has become metamorphic. 
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2.2 Stranski-Krastanov growth of InAs quantum dots 

The pioneering work for the self-assembled formation of coherently strained InAs QDs on 

GaAs(100), initially observed in 1985 [1], was performed in the mid-1990s [2–4] when it was 

demonstrated that the 7.2% lattice mismatch of InAs on GaAs enables controllable formation of 

nanoscale islands by SK growth mode. The principal stages of SK QD formation are illustrated 

in Figure 2.3. The initial stage is the formation of a two-dimensional wetting layer (WL) shown 

in Figure 2.3(b). Once the critical value of InAs coverage (θc) is exceeded, InAs begins to 

nucleate as three-dimensional islands [Figure 2.3(c)]. The three-dimensional shape of the 

islands allows the expansion of the in-plane lattice constant of InAs towards its equilibrium 

value, which causes distortion to the underlying GaAs crystal. This so-called elastic strain 

relaxation makes the formation of three-dimensional islands energetically favorable for highly 

mismatched material systems, such as InAs/GaAs. For the ternary InxGa1-xAs alloy SK QD 

formation is observed for x>0.3 [24,25]. The critical coverage θc for InAs is around 1.6 

monolayers (ML). For InxGa1-xAs it increases with decreasing In composition [24]. 

The formation of self-assembled SK QDs (SAQD) is a statistical process which is sensitive to 

the InAs growth rate (GR), surface temperature (T), and the ratio of group V and group III 

fluxes. These growth parameters determine the migration length of In adatoms on the surface, 

which along with θ controls the average size and density of the SAQDs. The density of 

InAs/GaAs SAQDs is in the range from 1×108 to 1×1011 cm-2 and the typical height and base 

width range from 2 to 12 nm and from 10 to 50 nm, respectively [26]. Direct consequences of 

the statistical nature of the SAQD growth process are that the resulting QDs are randomly 

located on the surface and that their sizes vary from dot to dot according to a Gaussian 

distribution [27]. The shape of InAs SAQDs is approximately a pyramid, which is formed by a 

combination of steep {111} and {110} facets and/or shallow {135} and {137} facets [28,29]. 

Figure 2.3(d) shows an atomic force microscope (AFM) image of InAs SAQDs formed by 

depositing 2.2 ML InAs with a GR of 0.05 µm/h at substrate temperature of 515 °C.   
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InAs

GaAs

In (i) In (i)

(a) (b) (c)

InAs

GaAs

(e)(d)

In (ii)

 

Figure 2.3. InAs Stranski-Krastanov QD formation on GaAs surface. (a) shows the equilibrium 

crystal structures of InAs and GaAs. SK growth begins by formation of a two-dimensional WL 

(b). Once the critical thickness for island formation is exceeded InAs accumulates as coherent 

three-dimensional islands (c). 1×1 µm2 AFM picture of InAs/GaAs(100) SAQDs having a 

density of around 1×1010 cm-2 (d). During overgrowth by GaAs (e), the height of the QD is 

reduced due to migration of In atoms from the top of the QD to the surrounding GaAs surface (i) 

and In atoms from the WL segregate to the surface (ii). 

Once the InAs SAQDs are formed, they are usually stabilized by capping them with GaAs. 

Figure 2.3(e) illustrates the early stage of overgrowth of the InAs SAQD by GaAs. The 

elastically relaxed InAs island is an energetically unfavorable location for GaAs growth due to 

the lattice mismatch, and thus in the beginning of capping there is no GaAs growth on top of the 

QD. Before being covered by GaAs layer the QD experiences a strong reduction of its 

height [30], which depends on the GaAs growth rate and temperature. Already the first few 

monolayers of overgrown GaAs increase the elastic energy of the QD significantly because the 

freedom for elastic strain relaxation is reduced. Furthermore, the GaAs layer covering the WL 

affects the surface energy in the surroundings of the QD. The surface energy of InAs is lower 

than that of most of the GaAs surfaces, and therefore there is a tendency of In atoms to detach 
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from the top of the QD and migrate on the newly-formed GaAs surface in order to create a 

second WL [31]. For the same reason, In atoms from the WL segregate to the GaAs covered 

surface, which reduces the In composition of the WL. According to the microscopic model for 

the capping process of InAs SAQDs proposed by Costantini et al. based on scanning tunneling 

microscopy (STM) observations, the reduction of QD height takes place during the deposition 

of the first 4 MLs of the GaAs layer [32]. They proposed that the detachment of In atoms from 

the QD is caused by the direct flux of Ga atoms to top of the QD. The QD height is stabilized as 

the alloy of detached In atoms and the Ga atoms of the capping flux covers the flanks of the QD. 

Finally, as the overgrowth proceeds, the QD becomes fully covered by GaAs. The increase of 

elastic energy during GaAs overgrowth as well as the abrupt composition gradient over the QD-

GaAs interface gives rise to intermixing of In atoms from the QD with Ga atoms from the 

surrounding GaAs matrix. The intermixing process may reduce the In composition of the InAs 

QD significantly and create various different composition gradients depending on the 

overgrowth conditions and initial morphology of the QD [33–36]. Consequently, many different 

kinds of QD morphologies can be obtained by adjusting the conditions of InAs deposition and 

GaAs overgrowth. 
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Chapter 3 

3 Site-controlled Growth of InAs 

Quantum Dots 

An inherent disadvantage self-assembled SK growth is that the QDs are randomly distributed 

on the substrate. Various methods have been developed to overcome this disadvantage [37], but 

essentially they are all based on controlling the migration of In adatoms and creating 

energetically favorable nucleation sites. The adatom migration on a surface with non-uniform 

properties is driven by local gradients in the chemical potential, which for In can be expressed 

as [31,38] 

( ) ( ) ( ),
2

2
||In

0
In r

r
r κγ

ε
μμ Ω+

⎥
⎥
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⎤

⎢
⎢
⎣

⎡ Ω
+=

Y
  (3.1) 

where In
0μ  is the chemical potential of In on a flat, uniform reference surface. The second term 

is elastic correction to In
0μ , where Y is Young’s modulus, )(|| rε  the local in-plane elastic strain, 

and the Ω atomic volume.  The third term is the surface energy contribution to the chemical 

potential, where γ is the surface energy and ( )rκ  the surface curvature. From Eq. (3.1) we see 

that the migration of In adatoms on a GaAs surface can be controlled by adjusting )(|| rε , ( )rκ , 

or γ. Local variations of )(|| rε  can be introduced for example by exploiting the stress field of 

underlying MDs. A non-zero ( )rκ  can be created by the exploitation of nanopatterning 
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techniques.  Variations of γ can be provided by creating a surface which is composed of 

different facets. All of the above-mentioned three ways to control the migration of In adatoms, 

and thus control the nucleation of QDs, are discussed in this chapter using practical examples 

developed in the thesis work.  

3.1 Site-control by stress fields of misfit dislocations 

The formation of misfit dislocations is crystal’s way to reduce the elastic energy arising from 

the lattice-mismatch. The MDs are usually formed at the bottom interface of the strained layer 

[15]. Two main types of dislocations are edge dislocations and screw dislocations. The edge 

dislocation is either an additional or a missing row of atoms and its Burgers vector (b) is 

perpendicular to the dislocation line direction, while in the screw dislocation b is parallel to the 

dislocation line [39]. The MDs observed in two-dimensionally grown GaInP/GaAs(100) and 

InGaAs/GaAs(100) materials are typically so-called 60° dislocations that are neither pure edge 

nor screw dislocations, but rather those of mixed type [40]. The 60° dislocations have b in a 60° 

angle with respect to the dislocation line and in 45° angle with respect to the (100) plane. The 

magnitude of the Burgers vector for these dislocations is ||b|| = 2a  [22]. The strain relieving 

edge component of b can be decomposed into parts parallel and perpendicular to the layer-

substrate interface: ⊥+= bbb ||edge . The magnitudes of the in-plane and out-of-plane 

components of the Burgers vector for a 60° MD are [41] 

222||
ab ±=±=

b
 and   (3.2a) 

22
ab ±=±=⊥

b
.   (3.2b) 

The signs of ||b and ⊥b depend on the exact orientation of b. For a strain relieving MD in CS 

layer we have negative signs for both ||b and ⊥b , whereas in the case of TS, the sign of  ||b  is 

positive and the sign of ⊥b  negative. The formation of MDs at the layer-substrate interface 

induces a stress field that causes local fluctuations of )(|| rε  on the sample surface. Assuming 
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an infinitely large crystal, the tangential stress component of a pure edge dislocation lying at the 

distance hMD below the surface is [42] 

( )
( )
( )222

||MD
xx 1

4

MD

MD

hx

xbbhhxG

+

−
×

−
= ⊥

νπ
σ ,  (3.3) 

where G is the shear modulus, ν is the Poisson’s ratio, and x is the lateral distance from the MD. 

Figure 3.1(a) and (b) show stress fields on the surface 90 nm above MDs formed in TS and CS 

layers, respectively. The stress field of a MD is a local fluctuation that exhibits positive and 

negative maxima on the adjacent sides of it. The positive maximum corresponds to a region 

where ||a  is larger than further away from the MD. Since InAs has a larger a than GaAs,  )(|| rε  

for an In adatom is reduced in the area where MD
xxσ is larger than zero. According to Eq. (3.1), 

this creates a local gradient in ( )rInμ  that causes a preferable nucleation of InAs QDs on the 

tensile stressed side of the MD. As shown in Figure 3.1(c), the growth of InAs QDs on a MD 

network, referred to as a cross-hatch pattern, leads to the formation of QDCs oriented along the 

[011] and [011] directions. 

In [P1] we investigated the lateral alignment of InAs QDs grown on GaAs covered tensile-

strained GaInP (TS-GaInP) and compressively strained GaInP (CS-GaInP). Compressively 

strained GaInAs (CS-GaInAs) was used as a reference because the ordering of InAs QDs on 

CS-GaInAs has already been thoroughly studied [43–46]. As shown in [P1] (Figures 2 and 3), 

there is no difference between CS-GaInP and CS-GaInAs in terms of QD ordering, which is 

observed as a preferable nucleation of QDs on the MDs as multi-QD wide rows. However, QDs 

grown on TS-GaInP formed single-dot wide chains. The explanation for the difference between 

the TS and CS layers lies in the surface morphology. The stress field of the MD not only affects 

the QD nucleation but also causes local variations of growth rate during the two-dimensional 

growth of the strained layers and GaAs cap layer. In case of CS-GaInP and CS-GaInAs, this 

results in a ridge-valley morphology; the ridge is located on the tensile-stressed and the valley 

on the compressively-stressed side of the MD as shown in Figure 3.1(a). In the sample with TS-

GaInP, the valley is located on the tensile-stressed side of the MD [Figure 3.1(a)]. The surface 

curvature of the ridge-valley morphology gives an additional contribution to the QD formation. 

In this respect, the groove is a preferable nucleation site for the InAs QDs. In the sample with 
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TS-GaInP the surface curvature and stress field direct the migration of In adatoms on the same 

side of the MD, which results in a strong ordering of QDs. In the CS-GaInP and CS-GaInAs 

samples, on the other hand, the influences of the stress field and the surface curvature are 

counteracting each other, which weakens the QD ordering effect of the cross-hatch pattern.  

While InAs QD growth on the cross-hatch patterned TS-GaInP enables the formation of well-

defined QDCs, this technique has two major disadvantages. There is a lot of additional QD 

nucleation in between the MDs, which might be possible to avoid or at least minimize by fine 

tuning the growth conditions as well as the thickness and composition of the GaInP layer. 

However, more severe limitation is that, although the QDs arrange on the MDs, the MDs 

themselves are randomly located. Therefore, this method does not directly enable the control of 

the positions of the QDCs on the sample. 
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Figure 3.1. The stress field induced by a MD formed in a CS layer (a) and in a TS layer (b) 

presented by the solid curves. The dotted curves in (a) and (b) are AFM cross-sections of the 

sample surface above the dislocation. The SEM picture in (c) shows InAs QDs grown on a 60 

nm TS GaInP layer covered by a 30 nm GaAs layer. 
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3.2 Site-control by substrate patterning 

A widely used method for obtaining QD nucleation precisely on predetermined locations is to 

create local variations of ( )rκ  in Eq. (3.1) by nanopatterning the GaAs surface [47–50]. On 

such nanopatterned surface the net migration of adatoms to the bottom of the pits or grooves, or 

other recesses is driven by the curvature-induced capillarity [51]. In the microscopic view the 

driving force for the nucleation of InAs QDs in the recesses can be understood as a preferential 

accumulation of In adatoms at the step edges [52] or local inhibition of adatom migration due to 

the high step density in the recess. It has been also proposed that ( )rκ  of the recess causes a 

change in surface strain which gives rise to a local reduction of critical coverage θc [53]. Figure 

3.2(a)–(c) shows the basic steps of the regrowth process on a nanopatterned GaAs surface. 

Typically, the patterned surface is first covered by a thin GaAs regrowth buffer (RGB) in order 

to bury the patterning process related impurities and to smoothen the surface. The surface 

morphology after the RGB growth is illustrated in Figure 3.2(b). InAs deposition on the RGB 

results in (i) formation of a WL that covers the corrugated surface and (ii) nucleation of QDs in 

the recesses. Therefore, these QDs are essentially SK-QDs formed in pre-determined locations, 

and thus this growth method is commonly referred to as site-controlled SK growth.  

(a) (b) (c)

(d) (e) (f)

 
Figure 3.2. Schematic illustration of QD growth on patterned surface. (a) nanopatterned GaAs 

surface, (b) GaAs surface covered by a GaAs buffer, (c) InAs WL and QDs grown on the 

buffer. AFM pictures in (d)–(f) illustrate steps (a)–(c), respectively, for InAs QDCs grown on 

NIL patterned grooves. Initial depth, width, and period of the grooves are 30 nm, 90 nm, and 

180 nm, respectively. 
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The predetermined QD nucleation sites can be defined by several lithography techniques, 

including oxidization by atomic force microscopy [47], focused ion beam lithography [54], and 

especially electron beam lithography [48,49,55,56].  In [P2–P7] we have fabricated site-

controlled InAs QDCs by UV-NIL, which has been demonstrated to be an effective tool for the 

positioning of single InAs QDs [14–17]. The basic steps of GaAs patterning by UV-NIL are 

described in the following.  

3.2.1 Substrate patterning using nanoimprint lithography 

Nanoimprint lithography (NIL) is a nanofabrication method based on mechanical replication of 

a surface structure from a master template onto the sample. At ORC, the NIL process has been 

applied in several applications in addition to site-controlled QD growth. These include e.g. 

fabrication of metal nanocones [57], periodic gratings of distributed feedback lasers [58], and 

moth-eye antireflection coatings for photovoltaics [59]. 

The groove patterns used for the MBE growth of the QDC samples studied in [P2–P7] is a soft 

ultraviolet nanoimprint lithography (UV-NIL) process consisting of the seven steps described 

below and illustrated in Figure 3.3. 

1. Fabrication of the desired nanopattern on the silicon master by laser interference 

lithography.  

2. Pressing a glass composite on the master spin coated with OrmoStamp resist (Micro 

resist technology GmbH, Germany) followed by hardening the resist with UV light. 

3. Removal of the glass composite from the master with the hardened resist now attached 

to it. The glass composite with the hardened resist on it forms the stamp that is a 

negative of the master pattern. 

4. Spin coating mr-UVCur06 UV-NIL resist (Micro Resist Technology GmbH) on the 

template, which is a GaAs/AlGaAs/GaAs layer structure grown by MBE on a GaAs 

wafer. Details of the template are presented in [P2]. 

5. Pressing the stamp on the template and curing the resist with UV light. 

6. Removal of the stamp from the template followed by removal of the residual layer. 

7. Transferring the pattern to the template by BCl3/Ar chemistry and inductively coupled 

plasma reactive ion etching based etching. 
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The glass composite used in the NIL stamp is composed of three functional layers bonded to a 

thick carrier glass: a silicone cushion layer which distributes the imprint pressure and adapts to 

the shape of the sample; a thin glass (thickness 50–150 µm) layer, which is attached to the 

silicone layer, and prevents the lateral deformation of the pattern during the imprint; and the 

patterned OrmoStamp resist layer, which has inverted nanostructure on the surface. A fluorine 

containing molecule layer was used as an anti-adhesive in the UV-NIL process [60]. 

The NIL patterned GaAs wafers used in this thesis for the growth of site-controlled QDCs had 

four 10 mm × 10 mm areas with [011]-, [011]-, [010]-, and [001]-oriented grooves and a planar 

reference area in the middle of them. The grooves on each area were 30 nm deep, 90 nm wide, 

and they had a period of 180 nm. 

Before the patterned wafers were loaded into the MBE chamber for QD growth, they went 

through a chemical cleaning and oxide removal process. This process was a chemical treatment 

including an isopropyl alcohol (IPA) rinse before and after a chemical etch consisting of 

solutions of HCl, IPA and NH4OH [14].  
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Figure 3.3. Basic steps of UV-NIL process for fabrication of groove patterns on GaAs surface 

of the template wafer. 
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3.2.2 Fabrication of the regrowth buffer 

After the NIL process and chemical cleaning the groove patterned sample was instantly 

transferred into the MBE system. A standard degassing at 300°C was first performed in the 

preparation chamber in order to evaporate water molecules from the sample surface.  Then the 

sample was transferred to the growth chamber for thermal oxide removal carried out in As2 flux 

at 590°C. After the heat treatment the surface of the patterned sample was clean and free of 

oxide, and thus it was ready to be overgrown with GaAs. The GaAs RGB was grown at a 

relatively low temperature of 490 °C in order to avoid too rapid planarization of the patterned 

surface.  The growth rate was 0.6 µm/h. 

 

Figure 3.4. AFM cross-sections of grooves patterns before regrowth and after the growth of 

GaAs RGBs with different thicknesses. (a)–(c) presents [011]-, [01 1 ]-, and [010]-oriented 

grooves respectively. The AFM pictures on the right side of the graph show the [011]-, [011]-, 

and [010]-oriented grooves after the growth of 60 nm RGB. 
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Figure 3.4 shows AFM cross-sections of [011]-, [011]-, and [010]-oriented grooves before 

regrowth and after the growth of 15 nm, 30 nm, and 60 nm thick RGBs. The [001]-oriented 

grooves will be omitted from the discussion from now on since they are crystallographically 

symmetric to the [010]-oriented grooves. As shown in Figure 3.4, the groove depths decrease 

with increasing RGB thickness due to the directed migration of Ga adatoms to the bottom of the 

grooves, which is again driven by the surface curvature term in Eq. (3.1). The spontaneous 

planarization of the patterned surface in GaAs overgrowth sets the upper limit for the RGB 

thickness. It is also evident from Figure 3.4 that the planarization rate depends on the groove 

orientation in the following relation. 

 [011] < [010] < [011].   (3.4) 

The origin for the orientation dependency of the growth rate at the bottom of the groove arises 

from the anisotropies of Ga adatom migration and step attachment. The predominant migration 

direction of the Ga adatoms is along the [01 1 ] direction [61]. Therefore, ridge-to-groove 

migration of the Ga is strong for the [011]-oriented and weak for the [011]-oriented pattern, 

while the [010]-oriented pattern is an intermediate case. The second contribution to the 

anisotropic planarization of the grooves arises from the nature of the atomic steps that form the 

groove structure. The steps in the [011]-oriented grooves are As-terminated B-type steps which 

are more favorable locations for Ga adatom attachment than the Ga-terminated A-type steps 

found in the [011]-oriented pattern [62,63]. 

It should be noted that the groove structure may also be composed of crystallographic facets 

rather than stepped [100] surface. Generally, the Ga-terminated (n11)A are more stable than the 

As-terminated (n11)B facets because of the lower surface energy [64]. This leads to some 

degree of A-type facet preservation during GaAs overgrowth, which hinders the planarization 

of the [011]-oriented grooves. A thorough facet analysis for different groove orientations is 

presented in [P3].  

3.2.3 Quantum dot growth on groove patterns 

The growth of the GaAs RGB was followed by a subsequent formation of QDCs by deposition 

of InAs. It was estimated that obtaining dense QDCs at the bottom of each groove requires less 
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than 40 nm centre-to-centre separation between the neighboring QDs along the chain. This 

translates into a QD density of 1.5×1010 cm-2 for 180 nm groove separation. Based on a series of 

samples with SAQDs grown on planar GaAs, such QD density can be obtained by deposition of 

2.2 ML of InAs 0.05 µm/h growth rate at the temperature of 515 °C which was used as a 

starting point for QDC growth parameter optimization. The influence of the growth temperature 

on the formation of InAs QDs on grooves with different orientations is shown in Figure 3.5. At 

the lowest temperature of 505 °C we observe a high density of small QDs which are scattered in 

grooves. As the growth temperature is elevated to 515 °C, the QD density is reduced and the 
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Figure 3.5. AFM pictures of InAs QDCs grown at different temperatures. In (a)–(c), [011]-

oriented QDCs, in (d)–(f) [011]-oriented, and in (g)-(i) [010]-oriented QDCs. The height scale 

in (a)–(i) is 35 nm. 
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QD size increased. Finally at the highest temperature of 525 °C, the QDs get even larger and the 

density is not high enough to completely fill the grooves. The QD ordering and QD densities for 

different QDC growth temperatures and RGB thicknesses are presented in [P3]. It is worth 

pointing out that only the RGB thickness of 60 nm and the QDC growth temperature of 515 °C 

resulted in similar QD densities for each pattern orientation. With the other sets of growth 

parameters the QD density depends on the pattern orientation due to a combined effect of the 

pattern anisotropy and anisotropic In adatom migration [65].  

3.3 Site-control by facet-dependent surface energy 

The exploitation of strain and surface curvature for the lateral ordering of InAs QDs was 

discussed in the previous sections. According to Eq. (3.1), the third parameter that influences 

the migration of In adatoms on the GaAs surface is the surface energy γ. Since the net migration 

of In adatoms is towards lower chemical potential, the InAs QDs nucleate preferentially on 

crystal facets with low γ. 

In this thesis the influence of γ on QD nucleation was observed on the sidewalls of the [011]-

oriented grooves as reported [P3, P6]. Figure 3.6(a)–(c) show surface morphologies of samples 

with 2.2 ML InAs deposited on 15 nm, 30 nm, and 60 nm thick RGBs, respectively. The groove 

sidewalls of the sample with 15 nm RGB are decorated with a periodic ripple, which is reduced 

as the RGB thickness is increased to 30 nm and nearly vanished by further increase to 60 nm. 

The ripple was identified as a chain of small QDs (SQD) by cross-sectional dark field 

transmission electron microscopy (DFTEM).  

The reason for the formation of the SQDs on the sidewalls of the [011]-oriented grooves lies in 

the presence of the (411)A facets which have a surface energy comparable to low index GaAs 

surfaces [66]. As shown in Figure 3.6(e), the facet angle distribution of these grooves is 

dominated by the (411)A facets for the RGB thicknesses of 15 nm and 30 nm. As the RGB 

thickness is increased to 60 nm, (611)A facets become predominant. GaAs(611)A is most 

probably an unstable high-energy facet since it has not been reported elsewhere. This explains 

why the SQDs are nearly non-existent on the sample with RGB thickness of 60 nm. The 

influence of the SQDs on the carrier dynamics of the QDCs is discussed in [P6].  
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In summary, we used stress fields of misfit dislocations for the lateral ordering of InAs QDs in 

P[1]. The influence of facet-dependent surface energy on QD formation was observed in [P3] 

and its effect on photoluminescence was studied in [P6]. However, the primary method for 

controlling the nucleation sites of QDs in this thesis is the local surface curvature provided by 

the patterned substrate, which enabled formation of site-controlled QDCs investigated in [P2–

P7]. The next chapter focuses on the influence of the non-planar growth surface on the 

structural properties of InAs quantum dots.  
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Figure 3.6. Formation of SQDs on the sidewalls of the [011]-oriented grooves. AFM pictures in 

(a)–(c) show the QDCs and pattern morphology for RGB thicknesses of 15 nm, 30 nm, and 60 

nm, respectively. The cross-sectional DFTEM micrograph in (e) illustrates WL, QDCs, and 

SQDs after capping with GaAs. The slope angle graph in (d) shows the facets observed in the 

grooves shown in (a)–(c). 
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Chapter 4 

4 Structural Properties of InAs 

Quantum Dots Grown in Grooves 

As discussed in the previous chapter, the accumulation of indium adatoms on the 

lithographically defined locations is driven by local gradients in the surface chemical potential 

arising from the surface curvature. However, the patterned surface may also influence the shape, 

composition, and elastic strain fields of the QD, which determine its electronic structure. The 

influences of the growth on the groove pattern on the structural properties of InAs quantum dots 

are discussed in this chapter, which is based on the work presented in [P7]. Since the QD 

morphology is heavily changed during the GaAs overgrowth, the focus of the structural 

investigation was on QDs embedded in a GaAs matrix. The structural investigation was mostly 

limited to QDs grown in [01 1] oriented grooves (sample QD1). SAQDs grown in identical 

conditions on a planar surface (sample QD2) were used as a reference structure.  

4.1 Morphology  

The influence of the pattern on the morphology of the embedded QDs was investigated by 

means of a statistical DFTEM analysis. The DFTEM micrographs were taken using two-beam 

g=(200) imaging conditions. Since g200 DFTEM is sensitive to the chemical composition for 

semiconductors with zinc blende structure, it provides a reliable determination of the QDs 

dimensions and morphology [67,68]. 
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A truncated pyramidal QD shape with a slight elongation along the [01 1 ] direction was 

observed both for QD1 [Figure 4.1(b)] and QD2 [Figure 4.1(c)]. A truncated pyramidal cross-

section can be associated to several different three-dimensional QD shapes, such as truncated 

pyramids with square bases oriented along either <001> [69–71] or <011> directions [70,72]. 

The <001> and <011> oriented pyramids are composed of {110} and {111} facetted sidewalls, 

respectively. There are also several reports of truncated pyramids with octagonal bases [73–75], 

which are composed of a combination of {110} and {111} facets. A detailed evaluation of 

about 40 QDs per sample indicated that the QDs in both QD1 and QD2 are truncated pyramids 

bound by (100) top facets and inclined side facets. The existence of both {110} and {111} side 

facets was observed in both samples, but a statistical evaluation of the facet angles revealed that 

the steeper {111} planes are the predominant facets in QD1, while shallower {110} planes are 

the predominant facets in QD2. 

The DFTEM micrographs reveal also other differences in the morphology of QD1 and QD2. 

While QD2 [Figure 4.1(c)] has a flat bottom, we found that the shape of the groove determines 

the shape of the lower part of QD1 [Figure 4.1(a)]. In particular, we observed that the bottom of 

QD1 replicates the groove morphology, i.e., it is flat only in a reduced area at the centre and 

curves on the sides towards the groove sidewalls. Furthermore, it is obvious from Figure 4.1 

that the QDs grown in the grooves are taller than the QDs grown on the planar surface. In order 

to investigate the QD size in both samples more thoroughly, we performed a statistical analysis 

of the QD height h, base width b, and aspect ratio AR = h/b. The average QD dimensions and 

their standard deviations were determined after analyzing more than 40 QDs per sample from 

DFTEM micrographs with [011] zone axis. As a result, we obtained h=8.3 nm±1.0 nm, 

b=29.0 nm±3.0 nm, and AR=0.29±0.4 for QD1 and h=5.5 nm±0.6 nm, b=28.1 nm±3.1 nm, and 

AR=0.20±0.3 for QD2. As these values indicate, AR is significantly larger for QD1 than for 

QD2 and the difference originates predominantly from the difference in the QD height. Since 

the height of the QDs before capping was found to be the same (12 nm) for both QD1 and QD2, 

the difference of the aspect ratios between the QDs grown on the nanopattern and on the planar 

surface seems to appear during the capping process. 

Similar, although not so comprehensive, DFTEM analysis was performed also for the QDs 

formed in the [011]-, and [010]-oriented grooves, for which the average values of b, h, and AR 
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were similar to those of QD1. Furthermore, they exhibited elongation along the [01 1] direction 

as well as {111} planes as predominant facets similarly to QD1. 

Figure 4.1(d) and (e) illustrate the QD and WL geometries of QD1 and QD2, respectively, 

constructed based on the DFTEM statistics. It should be noted that the value of b was 

determined for both QD1 and QD2 from DFTEM micrographs taken along the [011] zone axis. 

Consequently, b is the side of the square base of QD1, while for QD2 it is the diagonal of the 

base. Although the g200 DFTEM micrographs contain information about the chemical 

composition, they cannot be directly used for the determination of the In content of the QDs due 

to elastic relaxation as well as experimental uncertainties related to location of the QD in the 

TEM foil.  

(d)

(e)

 

Figure 4.1. Chemically sensitive cross-sectional g200 DFTEM micrographs. In (a) and (b) QD1 

is viewed along the [01 1] and [011] zone axes, respectively. (c) shows QD2 viewed along the 

[011] zone axis. The insets in (b) and (c) show AFM pictures of QD1 and QD2 before capping. 

(d)  and (e)  show schematic illustrations of the QD and WL geometries for QD1 and QD2, 

respectively, as determined from the DFTEM statistics. The GaAs matrix has been excluded 

from (d)  and (e) for the sake of clarity. 
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4.2 Elastic strain 

The elastic strain in a QD arises from the lattice mismatch between the matrix and the QD 

materials, which in case of InAs QDs is determined by the actual In content of the QD after 

embedding. The strain in a QD is partly relieved by elastic strain relaxation, which depends on 

the shape of the QD. In [P7] we utilized an experimental high-resolution TEM (HRTEM) based 

strain analysis in conjunction with finite element method (FEM) calculations in order to 

determine the influence of the growth on groove pattern on the strain and In composition of 

InAs QDs. The most important findings of that analysis are presented in the following. 

4.2.1 Experimental strain analysis 

The HRTEM micrographs shown in Figure 4.2(a) and (c) reveal that both QD1 and QD2 grow 

coherently strained on top of the GaAs prepatterned and planar surfaces, respectively. The 

coherent strain in the InAs QDs produces a tetragonal distortion of the cubic unit cells that can 

directly be assessed from the HRTEM images. We use the LADIA program package [76] to 

evaluate the strain distribution. The tetragonal lattice distortion of the layer is the derivative of 

the displacement between the atomic positions and the reference lattice, which in our case was 

the GaAs matrix [77]. Figure 4.2(b) and (d) display the out-of-plane ( **
⊥= εε zz ) strain 

distributions in QD1 and in QD2, derived from the HRTEM micrographs in Fig. 4(a) and (c), 

respectively. Symbol “*” in *
⊥ε  indicates that the strain is measured in reference to the lattice 

constant of the GaAs matrix, not in reference to the natural unstrained lattice constant of the QD 

material as in Eq. (2.3). The out-of-plane strain is given by 

GaAs

GaAs

a
aa −

= ⊥
⊥
*ε      (4.1) 

where a⊥ is the out-of-plane lattice constant and aGaAs is the GaAs lattice constant. The strain 

maps in Figure 4.2 evidence not only the morphological differences between QD1 and QD2 (in 

particular, the different h and AR) but also reveal the significant differences in their strain 

distributions. In QD2, grown on the planar surface, the maximum *
⊥ε  localizes at the centre of 

the QD with *
⊥ε  (max) around 12.2%. These features are in agreement with previous works on 

the strain field of InAs SAQDs [78,79]. On the other hand, unlike QD2, the maximum strain at 
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QD1 localizes at the very top part of the QD and amounts for a lower value of about 10.7%. 

The examination of QD1 along both [01 1] and [011] zone axes yields the same result and, in 

particular, it confirms this specific strain distribution where the maximum strain value localizes 

at the upper part of the QD.  

 

Figure 4.2. HRTEM images of QD1 (a) and QD2 (c). (b) and (d) display the out-of-plane strain 
*
⊥ε  maps obtained from the HRTEM images in (a) and (c), respectively, after the analysis with 

the LADIA software. 

4.2.2 Strain model 

Further insight into the elastic strain in structures QD1 and QD2 was obtained from three-

dimensional continuum mechanical strain calculations. The QD-WL geometries for QD1 

[Figure 4.1(d)] and QD2 [Figure 4.1(e)] for the strain model were constructed based on the 

DFTEM data and AFM cross-sections of the groove. The lattice mismatch was incorporated in 

the model by pseudo-thermal expansion [80] and the elastic strain in the QDs was solved by 

minimization of elastic energy by FEM [81]. The details of the strain model are described in 

[P7]. 
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Figure 4.3(a) and (b) present 2D cross-sections of *
⊥ε   for QD1 and QD2, respectively, 

calculated assuming that the QDs are consisting of pure InAs. The elastic strain relaxation is 

most pronounced in the upper corners of both QD1 and QD2 as well as in the curved bottom of 

QD1. Both QD1 and QD2 exhibit an area of uniform high *
⊥ε  value in the middle section of the 

QD. The maximum values of *
⊥ε  in QD1 [Figure 4.3(a)] and QD2 [Figure 4.3(b)] are 10.9% 

and 11.7%, respectively. These values are in remarkable agreement with the data extracted from 

the experimental strain maps shown in Figure 4.2(b) and (d). However, the simulation 

performed assuming a uniform InAs composition [Figure 4.3(a)] does not reproduce the low 

value of *
⊥ε  observed in the bottom part of QD1 [Figure 4.2(b)]. Therefore, the model was 

refined by introducing a more realistic composition profile for QD1. 

Since the experimentally observed strain profile in QD1 in Figure 4.2(b) strongly resembles 

observations on In0.5Ga0.5As/GaAs QDs where an inverse-cone type composition profile was 

proposed [79,82], a graded In composition (xIn) profile of the inverse-cone type was introduced 

in the strain calculations, as illustrated in Figure 4.3(c) and (d) for QD1 and QD2, respectively. 

The graded composition profiles have pure InAs material along the line that runs vertically 

through the centre of the QD and an inverse-cone type gradient towards the bottom corners 

where the In composition xIn is approximately 0.5.  

Figure 4.3(e) and (f) show the simulated *
⊥ε  distribution maps for QD1 and QD2 obtained from 

strain simulations assuming the inverse-cone type xIn profiles. The introduction of the graded 

composition profile for QD1 [Figure 4.3(e)] yields to an excellent agreement both qualitatively 

and quantitatively between the predicted and the experimental strain maps [Figure 4.2(b)]: the 

model predicts a maximum  *
⊥ε   value of about 10.1% in the upper part of the QD, whereas 

 *
⊥ε   reduces towards the bottom of QD1. Regarding QD2, as shown in Figure 4.3(f), the 

graded composition profile produces a vertical strain gradient which, however, is not observed 

in the experimental strain maps [Figure 4.2(b)]. In this case, the uniform In composition model 

[Figure 4.3 (b)] yields a better agreement with the experimental strain distribution. 

An advantage of solving the complete strain tensor is that we can investigate also the magnitude 

of other strain components, such as (i) the shear strain εshear = εzz-0.5×(εxx+εyy) that gives rise to 
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the splitting of the heavy and light hole valence bands and (ii) the hydrostatic strain 

εhydro=εxx+εyy+εzz  that changes the energy separation between the conduction and valence bands 

[83,84]. It should be noted here that the strain components εxx, εyy, and εzz are calculated with 

respect to the equilibrium lattice constant of the QD material, as in Eq. (2.2).  

Shear strain distributions for QD1 calculated using uniform and inverse-cone type xIn 

distributions as well as for QD2 composed of pure InAs are presented in [P3] (Figures 7 and 9). 

The most important finding from the comparison of εshear distributions of QD1 and QD2 is that 

the curved geometry of the lower part of QD1 provides additional strain relaxation along the 

[011] direction, which is observed as an hourglass shape in the εshear map.  This contribution 

arises from the influence of the groove where QD1 is located and it gives rise to a lateral 

anisotropy of εshear in QD1. The influence of this anisotropy on the hole confinement will be 

discussed in the following chapter. 

* *

(a) (c) (e)

(b) (d) (f)

 

Figure 4.3. 2D cross-sectional maps of the out-of-plane strain component *
⊥ε  for QD1 (a) and 

QD2 (b) with uniform In compositions. Inverse-cone type graded In composition profiles (xIn) 

for QD1 (c) and QD2 (d). ). The out-of-plane strain *
⊥ε  distributions for QD1 (e) and QD2 (f) 

are obtained from FEM simulations using the xIn distributions in (c) and (d), respectively. The 

cross-sections in (a)–(f) are taken along the centre of the QD. 

In P[3] we also investigated the influence of the morphological differences between QD1 and 

QD2 on their hydrostatic strain. We found out that the maximum value of εhydro in QD1 is 9.0%, 

while in QD2 it is 8.0%. By analyzing the results of several simulations we came to the 
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conclusion that 80% of this difference arises from the difference in the AR and 20% from the 

curvature of the bottom of QD1. The influence of εhydro on the bandgaps of QD1 and QD2 will 

be discussed in the following chapter.  

4.2.3 Evolution of strain during capping process 

As discussed above, the QDs nucleated in the grooves experience less height reduction during 

the capping process than SAQDs grown on a planar surface. Furthermore, they exhibit an 

inverse-cone type composition profile while the SAQDs have a uniform composition. As the 

height of the embedded InAs QDs is determined by the early stage of the capping process,   

additional simulations were performed in order to determine the evolution of strain in QD1 

during GaAs capping. QD2 was again used as a reference. The results are presented in Figure 

4.4, which shows that the elastic strain energy in QD1 is smaller than in QD2 for GaAs cap 

thicknesses below 10 nm. The heights of QD1 and QD2 were assumed to be 8.3 nm and 5.5 nm, 

respectively during the whole capping process. This is not exactly correct since for 0 nm cap 

thickness the height of both QD1 and QD2 should be 12 nm, as obtained from AFM analysis of 

uncapped QDs [P7]. However, as shown in the inset of Figure 4.4, the truncation factor of a 

pyramidal QD (i.e. height) does not determine the value of elastic strain energy in the beginning 

of the capping process, because at this point the strain energy is condensed into the bottom of 

the QD which is in contact with the GaAs surface below. It should be noted that the interface 

area between the QD base and GaAs surface is larger in QD1 than in QD2 [c.f. Figure 

4.1(d) and (e)].We can, therefore, state that the curvature at the bottom of QD1 reduces the 

elastic strain during GaAs capping. As the GaAs cap thickness increases and both QD1 and 

QD2 are fully capped, the elastic strain energy of QD1 saturates at a higher level than that of 

QD2 because of the difference in the volumes between these two structures. Therefore, QD1 is 

more stable than QD2 at the early stage of the capping, while the situation is reversed once both 

structures are fully embedded. This explains why QD1 experiences less height reduction which 

takes place at the beginning of capping. Furthermore, the larger elastic strain energy after 

capping increases the tendency for strain driven intermixing, which is most probably the driving 

force for the formation of the inverse-cone type composition grading which is initiated by the 

large strain in the bottom corners of QD1 observed in Figure 4.3(a).  
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Figure 4.4. Elastic strain energy in QD1 and QD2 with respect to GaAs cap thickness. In the 

main plot the height of QD2 is assumed to be 5.5 nm. The inset shows the elastic energy before 

capping for QD2 for three truncations. The largest height represents a full pyramid. 
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Chapter 5 

5 Electronic Properties of InAs 

Quantum Dots Grown in Grooves 

Quantum dots composed of In(Ga)As have a smaller band gap than the surrounding GaAs 

matrix, and thus they provide confinement of charge carriers in all three spatial dimensions. The 

depth and shape of the potential well that the QD creates depends on the shape and composition 

of the QD as well as on the strain-induced band deformation and piezoelectricity. Confinement 

of charge carriers into a nanoscale volume gives rise to discretization of allowed energy states 

of electrons in the conduction band and holes in the valence band. The energy state hierarchy in 

the QD resembles that of an atom, and thus QDs are sometimes referred to as artificial atoms. 

The energy state structure determines, for example, the properties of the photoluminescence (PL) 

emission arising from the recombination of confined electrons and holes. As discussed in the 

previous chapter, growth on a groove pattern influences the shape, composition, and strain of 

InAs QDs. The impact of these morphological parameters on the electronic properties of InAs 

QDs is discussed in this chapter. 

5.1 Band gap 

The unstrained bulk band gaps (Eg(0)) of InAs and GaAs at 0 K temperature are 0.417 eV and 

1.519 eV, respectively. For the ternary InGaAs compound with In composition xIn the bandgap 

can be estimated by cubic interpolation [85]:  
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( ) ( ) ( ) InInInIng xxxxE ×−×−−×+×= 1eV447,01eV519.1eV417.00 . (5.1)  

The temperature dependence of the InGaAs band gap can be estimated by the semi-

experimental Varshni relation:  

( ) ( ) ,0
2

T
TETE gg +

−=
β
α    (5.2) 

where the parameters α and β depend on xIn are typically obtained by a linear interpolation of 

the values of InAs and GaAs.  

As discussed in Section 4.2.2, QD1 has an inverse-cone type composition grading, and thus its 

unstrained band gap will vary spatially according to Eq. (5.1). QD2, on the other hand, has a 

uniform band gap since it can be assumed to be composed of pure InAs. The band gaps of both 

QD1 and QD2 are affected by hydrostatic and shear strain components arising from the 

compressive lattice mismatch between In(Ga)As and GaAs. 

The hydrostatic strain causes a shift of the average valence band energy ( ) 3/, solhhhavv EEEE ++= , 

where Ehh, Elh, and Eso are heavy hole, light hole, and split-off band edge energies, respectively: 

( )zzyyxxv
hydro

avv aE εεε ++=Δ ,    (5.3a) 

and similarly for the conduction band energy  

( ),zzyyxxc
hydro
c aE εεε ++=Δ    (5.3b) 

where av and ac are hydrostatic strain deformation potentials for the valence and conduction 

bands, respectively. The signs of av and ac are negative and positive, respectively [83,84].   

The shear strain couples to the spin-orbit interaction and leads to a splitting of the valence band 

energies. In the case of growth on (100) surface, the energy shifts relative to 3, soavvhh EE Δ+=  

( soΔ is the spin-orbit splitting in the absence of strain) are as follows: 

shearshear
hh EE δ

2
1

−=Δ ,   (5.4a) 
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The strain-induced shift shearEδ depends on the surface orientation. In the case of growth on a 

(100) surface it can be expressed as: 

( )⎥⎦
⎤

⎢⎣
⎡ +−= yyxxzzt

shear bE εεεδ
2
12 ,   (5.4) 

where bt is the tetragonal shear deformation potential, which has a negative sign [83,84].   

In the case of compressively-strained material, such as InGaAs grown on GaAs, εhydro raises the 

conduction band and lowers the valence band, which leads to an overall increase of the band 

gap. According to our strain calculations, the εhydro is 9.0% in QD1 and 8.0% and QD2. It is 

therefore expected that the band gap in the In-rich core of QD1, where xIn=1, is larger than in 

QD2 that is composed of pure InAs. The shear strain, on the other hand, lifts up the heavy hole 

band and pulls down the light hole band. Therefore, the potential for holes is minimized in the 

areas where the εshear is maximized. As discussed in Section 4.2.2, QD2 exhibits a lateral 

anisotropy of εshear, which is expected to give rise to a lateral anisotropy of hole confinement. 

The influences of this anisotropy on the band gap and carrier confinement are addressed in 

Section 5.2, where the quantum mechanical model for electron and hole states in QDs is 

described. 

In addition to the band deformation, there is another strain-induced phenomenon that affects the 

potential environment in the QD-matrix system. Shear strain induces static piezoelectric charge 

dipoles in the InGaAs-GaAs interfaces. The polarization vector of these dipoles can be 

expressed as [86] 
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where e14 is the piezoelectric coefficient, which is -0.160 C/m2 for GaAs and -0.044 C/m2 for 

InAs [87]. εij (i ≠ j) are off-diagonal elements of the strain tensor. The piezoelectric charge 

density can be calculated from the divergence of the polarization 

 Pdivpiezo −=ρ .    (5.6) 

The piezoelectric dipoles are in zincblende structures formed around [111]-oriented interfaces. 

Thus in QD1 the piezoelectric dipoles are induced around the side facets of the truncated 

pyramid [c.f. Figure 4.1(d)], while in QD2 they are located around the edges of the side facets 

[c.f. Figure 4.1(e)]. The orientation of the charges is such that the positive charge is inside the 

QD along the [01 1] and outside the QD along the [011] direction.  

5.2 Calculation of electron and hole states 

The quantum mechanical models for QD1 and QD2 were created with the nextnano3 simulation 

package [88,89] using the three-dimensional QD geometries shown in Figure 4.1(d) and (e). 

The WL was excluded from the model for the sake of simplicity. Both strain-induced band 

deformation and piezoelectricity were included in the model. The band offsets for the In(Ga)As-

GaAs interfaces were taken from the nextnano3 database. The band bending in the interfaces 

was obtained from the Poisson equation which was solved self-consistently with the 

Schrödinger equation. The calculations were performed for 10 K temperature. 

The electron and hole wave functions and eigenenergies for QD1 and QD2 were solved by 8-

band k.p method using Dresselhaus 8-band parameters (L, M, and N), which were calculated 

from 6-band parameters taken from the nextnano3 database.  The quantum mechanical model 

was tested using both Dirichlet and Neumann boundary conditions. When the size of the 

computational cell was increased enough, both boundary conditions produced the same results. 

The final calculations were performed using Dirichlet boundary conditions. 

Figure 5.1 shows the simulated conduction and valence band edge diagrams for QD1 and QD2 

along with the ground states and first excited states for electrons and holes. Only the electron 

and hole ground states were analyzed in detail because exclusion of the WL will make the 

model inaccurate for the excited energy states located closer to the GaAs band edges. In both 
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QD1 [Figure 5.1(a)] and QD2 [Figure 5.1(b)], the hole ground states lie very close to the heavy 

hole valence band edge, while the electron ground state in QD1 is located closer to the 

conduction band edge than in QD2 due to the larger h value in QD1. Moreover, the band gap is 

larger in QD1 than in QD2 due to the larger hydrostatic strain in QD1. It should be also noted 

that in QD1 the tails of the electron and hole wave functions extend to the In-poor sides of the 

QD where the band gap is larger. This effect slightly lifts the electron states and lowers the hole 

states compared with the case of QD1 with a uniform In composition (simulation not shown). 

Consequently, the energy separation between the electron and hole ground states ΔE = Ee0 - Eh0 

is around 1.01 eV for both QD1 and QD2, regardless of the fact that the former has a 

significantly larger height. In other words, the effects of the difference in the QD height are 

compensated by the contributions arising from the difference in the hydrostatic strain as well as 

in the composition. The 8-band k.p model takes into account the conduction band and all three 

valence bands shown in Figure 5.1 in the calculation of electron and hole states. This is 

important because, although the heavy hole band is the highest valence band in compressively 

strained QDs, the hole states is not purely heavy hole like due to band coupling. For example, 

the contributions of the conduction, heavy hole, light hole, and split-off bands to the hole 

grounds state of QD1 are 0.6%, 95.6%, 3.3%, and 0.5%, respectively. These values are similar 

to what has been reported to InAs SAQDs [90]. Similarly, there is around 5% contribution of 

valence bands in the electron ground state of QD1. 

Figure 5.2 shows the probability densities of the ground state electrons and holes calculated for 

QD1 with the inverse-cone composition gradient, and for QD2 composed of pure InAs material. 

The vertical size of both electron and hole orbitals is larger in QD1 than in QD2 due to the 

larger value of h in QD1. Moreover, the inverse-cone composition gradient provides an 

additional lateral carrier confinement in QD1. Note that the anisotropy of both electron and hole 

orbitals between the vertical [100] direction and the lateral [011] direction is significantly 

smaller in QD1 than in QD2.  

Furthermore, as shown in Figure 5.3, the lateral εshear anisotropy in QD1 causes an additional 

hole confinement along the [011] direction, giving rise to an in-plane hole anisotropy between 

the [011] and [01 1] directions. The lateral anisotropy of the hole confinement arising from εshear 

is discussed in more detail in [P7].  
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The orbital shapes and energies of the electron and hole states determine photon energy, 

intensity, and polarization of the spontaneous emission arising from the recombination of 

electrons and holes in the QDs. The carrier confinement potentials, on the other hand, largely 

determine the temperature-dependency of the spontaneous emission. The next chapter describes 

the emission properties of site-controlled InAs quantum dots by means of photoluminescence 

experiments.  
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Figure 5.1. Simulated conduction and valence band structures for QD1 with an inverse-cone 

type composition grading (a) and QD2 composed of pure InAs (b). The band edge curves are 

taken vertically along the centre of the QDs. 

 
Figure 5.2. Probability densities of the ground state electrons and holes for QD1 with inverse-

cone type graded composition profile (a) and for QD2 composed of pure InAs (b). 
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Figure 5.3. Probability densities of the ground state electrons (a) and holes (b) for QD1 with 

inverse-cone type graded composition profile viewed in the [100] directions. 
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Chapter 6 

6 Optical Properties of InAs 

Quantum Dots Grown in Grooves 

The spontaneous emission of photons that are produced by the recombination of confined 

electrons and holes is commonly measured by photoluminescence spectroscopy where the 

electron-hole pairs are created by optical pumping. The electron-hole pairs may be generated 

either directly to the QD (resonant injection) or to the GaAs matrix or WL (non-resonant 

injection). In the latter case, the carriers thermalize to the confined QD states by inelastic 

processes involving interaction with phonons. The probability for radiative recombination of 

electron-hole pairs can be expressed by the oscillator strength, which for a dipole transition 

between ground state electrons and holes is given as [91,92]: 

( ) ,
|ˆ|2
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he

he
he EE

m
f

−

>Ψ•Ψ<
=→

h
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pe   (6.1) 

where m* is the carrier effective mass, ħ is Planck constant and Ψe0 and Ψh0 are the wave 

functions for ground state electrons and holes, respectively.  ê  is the unit direction vector of the 

photon polarization and p
r

the electron momentum operator. It should be noted that both 

electron and hole ground states have two-fold spin-degeneracy, and thus there are altogether 

four possible transitions between the hole ground state and electron ground state, but only two 

of these transitions are allowed by the spin selection rules. The probability of the radiative 

ground state transition is thus the sum of the oscillator strengths of the two spin allowed 

transitions.  
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6.1 Excitonic transitions 

In semiconductor structures with higher dimensionality the radiative recombination of electrons 

and holes can be either band-to-band transition or recombination of excitons which are bound 

states of electrons and holes that are attracted to each other by Coulomb forces [93]. However, 

in a zero-dimensional structure, such as a QD, only excitonic transitions exist because the 

recombining electrons and holes are always bound to each other within the small volume 

confined by the QD.  

Figure 6.1(a) shows a schematic illustration of a single exciton, negatively charged exciton, and 

biexciton formed by ground state electrons and holes in a QD that has two allowed energy states 

for both electrons and holes. The recombination of a single exciton produces a narrow 

homogenously broadened Lorentzian spectral peak. A typical exciton lifetime for InAs/GaAs 

QDs emitting below 1000 nm is around 700 ps [17], which equals few µeV lifetime broadened 

peak width. However, the peak widths observed in steady-state PL spectra [Figure 6.1(b)] are 

usually slightly broader due to a time-dependent Stark shift caused by charge fluctuations in the 

proximity of the QD [94]. For example, the exciton peak widths of single InAs QDs grown by 

MBE on NIL patterned GaAs are around 40 µeV [17,60].  

Figure 6.1(c) shows a simulated PL spectrum of an ensemble of 100 QDs, which illustrates 

exciton peaks corresponding to the ground state (GS) and excited state (ES1 and ES2) 

transitions. The exciton peaks of the ensemble are spectrally scattered according to the Gaussian 

size distribution. The ensemble and single QD PL spectra can be measured with micro-PL 

measurement systems, which use microscope objectives for focusing excitation laser and 

collecting PL signal. A typical PL setup equipped with a regular lens collects light from a 

macroscopic ensemble of QDs. Figure 6.1(d) shows the quasi-continuous PL spectrum 

measured from such ensemble. As we can see from Figure 6.1(d), a macro PL spectrum does 

not provide information about the Lorentzian peak widths of individual QDs. Instead, the width 

of the spectral peaks of the ground state and excited state transitions are determined by the 

width of the Gaussian size distribution.   
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Figure 6.1. Schematic illustration of spontaneous emission by exciton recombination. (a) shows 

excitons formed by different ground state electron (●) and hole (○) configurations: single 

exciton (X), negatively charged exciton (X-), and biexciton (2X). (b) is a simulated PL spectrum 

showing ground state (GS) exciton peaks of a single QD. (c) is a simulated PL spectrum 

showing GS and two lowest excited state (ES1 and ES2) exciton peaks of an ensemble of 100 

QDs that have a Gaussian size distribution. (d) is a PL spectrum that shows emission from a 

macroscopic ensemble of QDs with Gaussian size distribution. 

6.2 Carrier dynamics 

The carrier dynamics in a three-state system consisting of the QD, the WL, and the GaAs matrix 

involve several processes in addition to radiative recombination in the QD. One prominent 

process at higher temperatures is non-radiative recombination in defects and other non-radiative 

recombination centres. Thus assuming that the oscillator strengths of two QD structures are 

similar, the PL intensity measured at room temperature can be exploited for relative analysis of 
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sample quality. In samples with site-controlled QDs, the non-radiative centres are most 

probably related to residual impurities from the NIL process and other regrowth related defects. 

In [P2] we compared the room temperature PL intensities of site-controlled QDCs and SAQDs 

and observed that the PL intensities of the QDCs are in the range from 11% to 24% compared 

with the SAQDs grown on an unprocessed GaAs subsrate. This relatively small difference in 

the room temperature PL intensities shows that the UV-NIL process causes only minor damage 

to the sample quality.  

The carriers that have been captured by the QDs may also be emitted back to the WL. This 

process is thermally activated and its activation energy is related to the potential barrier between 

the QD states and the WL. The exact activation energy depends on the nature of the escape 

process, which may be either single carrier escape, exciton escape, or escape of uncorrelated 

electron-hole pairs [95–97].  In [P6] we studied the thermally activated carrier escape from site-

controlled QDCs and SAQDs by temperature-dependent PL experiments and observed that 

QDCs and SAQDs have different predominant carrier escape processes: exciton escape for the 

SAQDs and either single carrier escape or escape of uncorrelated electron-hole for the QDCs. 

Furthermore, we observed that the small QDs formed on the sidewalls of the [01 1]-oriented 

grooves, which were discussed in Section 3.3, act as shallow carrier traps, which thermally 

release the carriers back to the WL at the temperature range from 20 K to 70 K. The activation 

energy of this thermally activated carrier transfer process [98] was determined as 11 meV by 

fitting a model to the temperature dependent intensity data. The details of the model are 

presented in [P6].  

6.3 Polarization of photoluminescence emission 

The polarization of the spontaneous emission from the recombination of electrons and holes in a 

QD depends on the shape of the electron and hole orbitals as well as the strain state of the QD. 

A lateral anisotropy of the QD shape gives rise to an in-plane optical anisotropy which is 

observed as different PL intensities for the polarizations along the [011] and [01 1] directions.  

The difference of the in-plane and out-of-plane polarizations can be measured by collecting PL 

light from the side of the sample in so-called cleaved-edge geometry, which is illustrated in [P7] 

(Figure 1). Compressively strained QDs with low AR are typically in-plane polarized due to the 
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predominantly heavy hole like valence band states [99]. The polarization of the cleaved-edge 

PL can be quantified by the degree of polarization  

%,100×
+
−

=
TETM

TETM

II
IIDOP    (6.2) 

where ITM and ITE are the intensities of the out-of-plane and in-plane polarized PL emissions, 

respectively.  ITM and ITE for the ground state transition were determined by fitting Gaussian 

peaks to the cleaved-edge PL spectra shown in Figure 6.2. The resulting experimental values of 

DOP for SAQDs (QD2) and QDCs (QD1) grown in [01 1]-oriented grooves were found to be -

59% and -19%, respectively [P7]. A theoretical estimation for DOP can be calculated from Eq. 

(6.2) by replacing the intensities with oscillator strengths calculated for different polarizations 

from Eq. (6.1). By doing this we obtain DOP=-21% for QD1 and DOP=-61% for QD2, which 

are in a remarkable agreement with the experimental values. Both QD1 and QD2 are in-plane 

polarized, but for QD1 the relative intensity of out-of-plane polarized emission is stronger than 

for QD2. This can be attributed to larger AR as well as the additional lateral confinement 

provided by the inverse-cone type composition gradient. 

 

Figure 6.2. Cleaved-edge PL spectra for QD1 (a) and QD2 (b) measured at 10 K for vertical 

(TM) and horizontal (TE) electric field polarizations. 
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In [P2] we observed that in-plane optical anisotropy of QDCs grown in grooves with different 

orientations can be decomposed into two components: one which is along the [01 1] direction 

and one which tends to align along the orientation of the groove. According to the DFTEM 

analysis of the QD morphology, the QDs grown in the grooves are elongated along the [01 1] 

direction, regardless of the pattern orientation. Thus the component of the anisotropy that is 

aligned along the [01 1 ] direction can be attributed to the shape elongation. The other 

component, which depends on the groove orientation, can be explained with the help of the 

quantum mechanical model described earlier in Chapter 5. As shown in Figure 5.3, the shear 

strain anisotropy arising from the influence of the groove on the shape of the bottom of the dot 

causes an anisotropy of the hole orbital. Such orbital shape causes an in-plane polarization 

along the direction of the groove. Another possible cause for the polarization along the groove 

is dot-to-dot coupling between the adjacent QDs. However, the hole orbital anisotropy shown in 

Figure 5.3 is large enough to fully explain the in-plane PL polarizations of QDCs with different 

orientations, which are shown in [P2] (Figure 3). The ability to tune the orientation of the 

polarization anisotropy by changing the groove direction is a unique property of the QDCs 

grown in the grooves. The following section presents two methods for modifying their in-plane 

polarization anisotropy. 

6.4 Modification of photoluminescence properties 

There are two very common methods for modifying the emission energy InAs QDs: Capping 

the QDs with a thin InGaAs layer can be exploited for red-shifting [100–102] and thermal 

annealing for blue-shifting [103–108] the emission of the QDs. In [P4] and P[5] we investigated 

the influence of these methods on the emission energy and in-plane polarization anisotropy of 

site-controlled QDCs grown in grooves. The main observations from these experiments are 

summarized in this chapter. 

6.4.1 InGaAs capping 

Capping the InAs QDs with a thin InGaAs layer has a strain relieving effect [101,102]. Thus 

such InGaAs cap layers are called strain reducing layers (SRL). Furthermore, InGaAs capping 

is known to increase the effective size of the QDs. In [P4] we investigated the influence of 
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In0.1Ga0.9As thickness on the properties of site-controlled QDCs grown in [011]-, [01 1]-, and 

[010]-oriented grooves. We observed that, similarly to SAQDs, the QDCs experience a red-shift 

of the ground state PL peak energy with increasing SRL thickness, which saturates once the 

SRL thickness is increased up to a certain level. This saturation point depends on the orientation 

of the groove pattern. Most rapid saturation was observed for the [011]-oriented QDCs and 

slowest saturation for the [01 1 ]-oriented QDCs. The QDCs grown in the [010]-oriented 

grooves experience similar red-shift behavior as the SAQDs. This orientation-dependence of the 

PL red-shift can be explained by the anisotropy of the In migration during InGaAs capping, 

which controls the accumulation of an In-rich alloy on the of the QDs during the SRL growth. 
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Figure 6.3. In-plane polarization of ground transition for QDCs capped with 0 nm, 3 nm, and 8 

nm InGaAs layers. (a)–(c) represent [011]-, [01 1]-, and [010]-oriented QDCs, respectively. (d) 

shows DOP as a function of InGaAs layer thickness for QDCs with different orientations. 
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As shown in Figure 6.3, InGaAs capping gives rise to only a very weak increase of the in-plane 

polarization anisotropy for [011]-and [010]-oriented QDCs. However, the [01 1]-oriented QDCs 

exhibit a strong increase of polarization with increasing SRL thickness. Furthermore, the [01 1]-

oriented QDCs show signatures of interdot coupling which get more pronounced when the SRL 

grows thicker [P4]. The enhancement of coupling in the [01 1]-oriented QDCs by InGaAs 

capping is consistent with the fact that they show significantly larger red-shift than SAQDs and 

the other QDC orientations [P4].  

6.4.2 Thermal annealing 

Annealing can be performed either in situ in the MBE chamber under protective arsenic flux 

[103,104] or ex situ in a rapid thermal annealing (RTA) apparatus [105–108]. In the latter case 

the surface of the sample can be protected for example with a GaAs proximity cap wafer or a 

thin dielectric layer in order to avoid As desorption that degrades the sample quality. In [P5] we 

performed the thermal annealing by RTA at 720 °C for site-controlled QDCs using proximity 

capping. The RTA treatment was conducted in 100 to 200 second steps and room temperature 

PL spectra were recorded after each step. 

We observed that the blue-shift, which is caused by the reduction of the In composition in the 

QDs by thermally activated intermixing, is more rapid for the QDCs than for SAQDs. For the 

QDCs, the blue-shift of the ground state PL peak was 120 meV after the 1400s total annealing 

time, while at that point the SAQDs had experienced only 80 meV blue-shift. After an 

additional 200 second annealing step, also the SAQDs reached total blue-shift of 120 meV. The 

intermixing of In and Ga atoms over the QD-matrix interface is driven by the composition 

gradient as well as the elastic strain energy arising from the lattice mismatch. As discussed in 

Chapter 4, the QDs grown in the grooves are larger in size than the SAQDs after embedding in 

GaAs. The larger volume of strained InAs material (i.e. larger elastic energy) that causes the 

formation of the inverse-cone composition grading also increases the tendency for thermally 

activated intermixing in RTA. Furthermore, any residual impurities from the patterning process 

may promote defect-mediated diffusion in RTA, and thus lead to a more rapid blue-shift for the 

site-controlled QDCs than for SAQDs grown on an unprocessed GaAs wafer. 

The polarization-resolved PL experiments carried out for QDCs before and after RTA (Figure 

6.4) showed that the optical anisotropy arising from the elongation of the QD bases along the 
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[01 1] direction is reduced in the annealing process.  Such behavior is expected since post-

growth RTA is commonly used for reducing the fine structure splitting caused by the inherent 

lateral shape anisotropy of InAs/GaAs(100) SAQDs [109]. Interestingly, however, the part of 

the in-plane optical anisotropy along the orientation of the groove either increases or is 

unaffected by annealing, which may be related to the role of the non-planar WL to the 

intermixing process. 
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Figure 6.4. In-plane polarization of ground transition before and after annealing. (a)–(c) 
represent [011]-, [01 1]-, and [010]-oriented QDCs, respectively. 
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Chapter 7 

7 Conclusions 

The most important achievements of this thesis are the demonstration of a new nanomaterial 

system composed of site-controlled InAs QDCs grown in NIL-prepared grooves and a thorough 

investigation of their structural and optical properties. In particular, it was shown that QDCs 

with similar QD density and emission energy can be formed simultaneously in grooves with 

different orientations by proper control of the growth parameters and pattern morphology. 

Furthermore, it was shown that the site-controlled QDCs have high optical quality and that they 

exhibit an in-plane optical anisotropy. The orientation of the in-plane optical anisotropy 

depends on the orientation of the QDC and its magnitude can be adjusted by thermal annealing 

and InGaAs capping. 

In more general perspective, this thesis revealed that the nanopattern on which the site-

controlled QDs are grown has a strong influence on their structural properties, including the 

aspect ratio, strain profile, and composition profile. These properties are strongly cross-

correlated and they all influence the electronic and optical characteristics of the QDs. The 

consequence of the findings is two-fold: (i) The morphology of the pattern has to be carefully 

considered in order to avoid unwanted optical anisotropies, but (ii) the morphology of the 

pattern can also be used as a design parameter for obtaining QDs with properties that are 

precisely suitable for a given application. For example, the growth of QDs in the grooves 

increases their oscillator strength of the vertically polarized spontaneous emission, which is the 

polarization component that can be coupled to surface plasmons in a metal film. This 

polarization property accompanied with the possibility of deterministic lateral positioning 
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makes the site-controlled QDCs potential building blocks of future plasmonic waveguides and 

networks. 

The work on integration of site-controlled QDCs and plasmonic metal structures has already 

produced interesting unpublished results which are not included in this thesis. This work was 

started by modifying the NIL process and MBE growth in order to obtain QDCs with larger 

lateral separation, which enables single-QDC spectroscopy by micro-PL. The first test 

structures having QDCs with 1000 nm separation coupled to surface plasmons in a silver film 

are currently being investigated. 

The parallel branch of research work that focuses on single InAs QDs grown on NIL patterns 

has moved towards formation of closely space QD ensembles for quantum dot cellular automata 

[110] as well as MBE growth of QDs in selectively-etched pyramidal pits on GaAs(111)B 

surface. The latter method is based on facet selective growth and so far it has been attained only 

by MOCVD [51]. The benefit of MBE in this respect is the ability to grow also planar layers on 

GaAs(111)B. The knowledge obtained from the experiments presented in this thesis will be 

valuable for understanding the facet formation during the MBE overgrowth of the pyramidal 

pits as well as the subsequent QD formation. This material system provides another potential 

platform for the integration of site-controlled III-V QDs and plasmonics as well as in situ 

formation of plasmonic structures by epitaxial growth of single-crystalline metal nanocrystals 

and nanowires directly on top of the QDs [111].    

The site-controlled InAs QDCs also exhibit great potential as the gain medium in QD-based 

ultra-low threshold photonic crystal lasers. Research activities on this application are currently 

being planned. In this respect, however, there is still work to be done on the QD size uniformity. 

To conclude, this thesis presents a new material system consisting of site-controlled InAs QDCs 

with different orientations as well as the ground work on the investigation of their material 

properties. The current level of technology is deemed as appropriate for development of 

advanced photonic devices. 
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Abstract We report the use of partially relaxed tensile as

well as compressively strained GaInP layers for lateral

ordering of InAs quantum dots with the aid of misfit dis-

location networks. The strained layers and the InAs QDs

were characterized by means of atomic force microscopy,

scanning electron microscopy, and X-ray reciprocal space

mapping. The QD-ordering properties of compressive

GaInP are found to be very similar with respect to the use

of compressive GaInAs, while a significantly stronger

ordering of QDs was observed on tensile GaInP. Further-

more, we observed a change of the major type of dislo-

cation in GaInP layers as the growth temperature was

modified.

Keywords Molecular beam epitaxy � III-V
semiconductors � Quantum dots � Ordering � InAs � GaInP

Introduction

The fabrication of high-quality, coherently strained quan-

tum dots (QDs) is necessary for numerous electronic and

photonic applications. Self-assembled QDs obtained from

the Stranski–Krastanov (SK) growth mode fulfill the quality

requirements for fabrication of devices, such as QD-based

laser diodes and detectors. A disadvantage of the self-

organizing SK growth is that the QDs are randomly dis-

tributed. Ability to create ordered QD structures, i.e.

deterministically positioned QDs, is essential for enabling

new optical and electronic applications, such as single-

photon emitters, single-electron transistors, or QD-based

memory devices. One way to affect the distribution of SK

QDs is to exploit the strain sensitivity of the growth process

[1, 2], which can be utilized as a tool for ordering the QDs.

The strain field around misfit dislocations (MDs) in a

partially relaxed compressively strained (CS) GaInAs layer

grown on a GaAs substrate has been shown to be promising

in ordering InAs QDs [3–6]. Nevertheless, GaInAs has a

relatively low band gap difference with respect to InAs,

GaInAs, or InP QDs, while a strong confinement of charge

carriers would be desirable in most optical applications. As a

solution, we here propose using partially relaxed GaInP

layers, which not only have a higher band gap than GaInAs

but also enable both compressively (CS) as well as tensile-

strained (TS) growth on a GaAs substrate. Non-relaxed

GaInP layers grown on GaAs substrates have been success-

fully used as templates for InP and InAs QDs [7, 8] and as a

tool for engineering the properties of InAs QDs [9]. Fur-

thermore, a strong ordering of InPQDs has been observed on

partially relaxed CS-GaInP [10]. In this article, we present

lateral ordering of InAs QDs on TS- and CS-GaInP layers

and compare these two cases with CS-GaInAs. So far, it has

been shown that the ordering of QDs can be achieved by

exploiting the strain field of a MD [3–6] or surface mor-

phology [11], but here we show that these two effects can be

combined together in order to enhance ordering of QDs.

Experiment

A set of four QD samples was grown on GaAs(100) sub-

strates by solid-source molecular beam epitaxy. All the QD

samples were comprised a 60-nm thick partially relaxed,

strained layer capped with a GaAs layer and covered with
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InAs QDs. The materials of the strained layers investigated

here are CS-Ga0.85In0.15As (sample A), CS-Ga0.38In0.62P

(samples B and C), and TS-Ga0.66In0.34P (sample D), all

being 1% lattice mismatched to the GaAs substrate, the first

two compounds being compressively and the third tensile-

strained. The CS-Ga0.85In0.15As and CS-Ga0.66In0.34P layers

in samples A and B, respectively, were grown at 520�C. The
TS-Ga0.66In0.34P layer in sample D was grown at a lower

temperature of 430�C in order to avoid transition from 2D to

3D growth mode, which is typical for this material when

grown at higher temperature [12]. For the sake of

comparison, we also prepared a QD sample C with a

CS-Ga0.38In0.62P layer grown at 430�C. The strained layers

in the QD samples were covered with 30-nm thick GaAs

cap layers, which served as templates for 2.2 monolayers

(ML) of InAs QDs grown with a growth rate of 0.02 ML/s.

The GaAs cap layers and QDs were grown at 540�C. Fur-
thermore, 60- and 80-nm thick TS-Ga0.66In0.34P layers

(samples E and F) without the GaAs cap layer and QDs

were grown 430�C in order to determine the critical layer

thickness for the formation of dislocations in this TS

material. Further details of the samples are listed in Table 1.

For post-growth characterization, we used atomic force

microscopy (AFM), scanning electron microscopy (SEM),

and high-resolution X-ray diffractometry (HR-XRD). AFM

was used for analyzing the surface morphology of the

samples as well as for determination of the average heights

(hQD) and densities (qQD) of the QDs. The lateral ordering

of QDs on dislocations was investigated with SEM. HR-

XRD reciprocal space maps (RSM) were measured around

(004) and (113) reflections for both [011] and [0–11]

sample orientations in order to determine the crystal

quality, In composition (xIn) and relaxation state (R[hkl]) of

the strained layers.

Results and Discussion

Before discussing the lateral ordering of QDs on the MD

networks induced by the TS- and CS-GaInP and -GaInAs

layers, it is necessary to evaluate the critical thickness and

the type of dislocations generated. The critical thickness

for the TS-Ga0.66In0.34P was estimated based on the SEM

observations of the dislocation induced lines on the sample

surfaces (not shown) and RSM results. The values of

relaxation as well as major dislocation types for each

sample are listed in Table 1. According to the RSM mea-

surement, sample E was fully strained and no lines were

observed in the SEM pictures. On the other hand, sample F

showed a very low density of [0–11]-oriented b-disloca-
tions indicating an early stage of strain relaxation. Thus,

the critical thickness of TS-Ga0.66In0.34P was estimated to

be around 80 nm. The critical thicknesses of the CS layers

were not determined in this study. However, according to

Ref. [4], 50 nm is a sufficient layer thickness to produce a

MD network in a Ga0.85In0.15As layer grown at 520�C.
Based on similar surface morphologies (Fig. 3a–c) and

values of strain relaxation (Table 1), we assume that

CS-Ga0.38In0.62P and CS- Ga0.85In0.15As layers investi-

gated here have a critical thickness below 60 nm.

According to Table 1, the major dislocation type in

CS-Ga0.38In0.62P changes from a to b as the growth tem-

perature is decreased from 520 to 430�C. The thickness of

the TS-Ga0.66In0.34P layer in sample D is lower than the

critical value. Hence, the dislocations were actually gen-

erated after the GaInP layer growth either during the

temperature ramp from 430 to 540�C or during the growth

of the GaAs layer. The fact that samples D and F have

different major dislocation types suggests that also

TS-Ga0.66In0.34P experiences a change of the major dislo-

cation type as the temperature is increased. What makes

this observation interesting is that a-dislocations have been
assumed to be the predominant dislocation type in all cases

due to their larger glide velocity [14].

The strain relaxation values on Table 1 show that the

strained layers in all of the QD samples are at the early

stage of strain relaxation. This is also observed in the RSM

of sample D shown in Fig. 1. Both GaAs and GaInP peaks

as well as satellite peaks are well observable, indicating

good crystal quality and low strain relaxation. The RSMs

Table 1 Details of the investigated samples. xIn and R[hkl] were calculated from RSM peak data, and hQD and qQD were determined for

1 lm 9 1 lm and 10 lm 9 10 lm AFM images, respectively [13]. The major dislocation type was determined based on several

20 lm 9 20 lm SEM pictures

Sample Material Strain Tg (�C) XIn R[011] (%) R[01-1] (%) hQD (nm) qQD (cm-2) Maj. Dislocation type

A GaInAs CS 520 0.142 1.60 1.40 13 5.0 9 109 a[0–11]

B GaInP CS 520 0.618 1.50 1.60 14 5.1 9 109 a[0–11]

C GaInP CS 430 0.617 1.70 1.60 13 5.6 9 109 b[011]

D GaInP TS 430 0.354 2.60 1.90 16 4.2 9 109 a[011]

E GaInP TS 430 0.34 0.00 0.00 No QDs No QDs No dislocations

F GaInP TS 430 – – – No QDs No QDs b[0–11]
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of the other samples (not presented here) showed similar

features.

Figure 2 shows SEM pictures illustrating the ordering of

QDs on CS and TS layers. On the CS layers (Fig. 2a–c),

the QDs are gathered on MDs, but the ordering is relatively

weak. However, on the TS layer (Fig. 2d), the QD accu-

mulation on the MDs differs with respect to the CS layers.

On TS layers, the QDs on the MDs are ordered in narrow

single-dot wide chains. Furthermore, according to the

quantitative data extracted from the AFM pictures and

summarized in Table 1, the height and density of the QDs

depend on the properties of the strained layer below them;

compared to the TS-Ga0.66In0.34P, the QDs on the CS

samples are larger and less dense. This can be explained by

a reduction of the critical InAs coverage for QD formation

due to the compressive strain of the underlying Ga0.38
In0.62P or Ga0.85In0.15As layer.

In order to interpret the differences of QD accumula-

tions on MDs on TS and CS layers, we analyzed the surface

morphology around the QD chains by AFM. The AFM

images in Fig. 3, show a clear difference between com-

pressive and tensile strain; the QDs on CS layers are

gathered on ridges (Fig. 3a–c), which is consistent with

Ref. [2] and [10], while on the TS-Ga0.66In0.34P (Fig. 3d)

the narrow QD chains are formed in grooves.

We try to explain the observed differences in ordering

by calculating the stress field on the film surface above a

MD for both CS and TS layers. The magnitude of the

Burgers vector of a mixed 60� MD is b ¼ bk k ¼ a
� ffiffiffi

2
p

,

where a is the lattice constant [15]. The edge component of

b can be decomposed into parts parallel and perpendicular

to the layer/substrate interface: bedge = b|| ? b\. The

magnitudes of the in-plane and out-of-plane components of

the Burgers vector are

bjj ¼ bjj
�� �� ¼ b

2
; ð1aÞ

b? ¼ b?k k ¼ b
ffiffiffi
2

p : ð1bÞ

The formation of MDs at the layer/substrate interface

induces a local stress field that affects the QD nucleation at

Fig. 1 XRD reciprocal space map measured from a 60-

nm Ga0.66In0.34P/GaAs layer (Sample D) around (004) reflection in

[011] direction

Fig. 2 SEM pictures (3.5 lm 9 3.5 lm) of QD chains on 60-nm

partially relaxed GaInP and GaInAs layers. Figures a–d correspond to

samples A–D, respectively. The layer material and growth temper-

ature of each sample are indicated in the figure

Fig. 3 AFM pictures of QDs on MDs. Figures a–d correspond to

samples A–D, respectively. The color height scale in each image is

5 nm
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the sample surface. The tangential stress component of

pure edge dislocation lying at the distance h below the

surface is

rMD
xx ¼ 4G

p 1� vð Þ �
hx hb? � xbjj
� �

x2 þ h2ð Þ2 ; ð2Þ

in which G is the shear modulus, v is the Poisson’s ratio,

and x is the lateral distance from the MD. Figure 4 shows

strain profiles calculated with Eq. (2) for a MD in TS and

CS layers using values for G and v indicated in Table 2 and

a layer thickness h of 90 nm. The in-plane and out-of-plane

components of the Burgers vector were assumed to be

b|| = -b/2, b? ¼ �b
� ffiffiffi

2
p

for the CS layers and b|| = b/2,

b? ¼ �b
� ffiffiffi

2
p

for the TS layer.

In both the CS (Fig. 4a) and the TS layer (Fig. 4b),

positive and negative maxima of the stress are formed on

the adjacent sides of the MD. This local strain fluctuation

affects the growth of the strained layer and GaAs capping

layer. In Ref. [2], the authors suggested that the surface

corrugation above a MD in an un-capped CS-GaInAs layer

is caused by formation of In-rich alloy on the tensile part

of the stress field of the MD (Fig. 4a). The growth of InAs

QDs is also favored in this area of the MD due to their

larger lattice constant; hence, the QDs are accumulated on

the ridge. The growth of a GaAs cap may also affect the

surface morphology. GaAs will most probably avoid the

In-rich ridge, which experiences local tensile stress [2] and

favor the Ga-rich grooves. The correlation between the

stress field of a MD and surface profile for a CS-GaInP is

shown in Fig. 4a. It appears that after growth of the GaAs

cap the surface corrugation is formed by a ridge and a

groove located above the tensile and compressive sides of

the MD, respectively. In sample D, the surface corrugation

is formed solely during the GaAs layer growth because the

MDs are formed after the growth of the strained layer. The

compressive stress of a MD locally compensates the ten-

sile strain of the GaInP layer on the right side of the

dislocation (Fig. 4b). Therefore, this area is favored by

GaAs and a ridge is formed. Correspondingly, GaAs tends

to avoid the tensile side of the MD, which becomes a

groove. Thus, the groove is formed above the tensile side

of the dislocation (Fig. 4b), not above the compressive

side as in the CS-GaInP layer. The InAs QDs, however,

accumulate on the tensile part of the dislocation. Thus, the

ordering of QDs on TS-GaInP is guided not only by the

strain field of the dislocation but also by the shape of

the groove, while on the CS-GaInP and CS-GaInAs layers,

the QDs accumulate on the ridges solely due to stress field

of the MDs.

Conclusions

It was shown that misfit dislocation networks obtained

from partially relaxed CS- and TS-GaInP layers can be

utilized for lateral ordering of InAs QDs. The strongest QD

ordering was observed on TS-GaInP, because of the

accumulation of QDs on narrow grooves that are formed

during the growth of the GaAs cap layer. The MDs on

CS-GaInP and CS-GaInAs layers, in which QDs are mainly

gathered on ridges, were shown to have similar QD

ordering properties including line distribution and direction

as well as QD height and density. Concluding, GaInP is a

good candidate for replacing GaInAs in order to align QDs

on MD networks and when a material of a higher band gap

is required.
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Table 2 Elastic properties of TS-GaInP and CS-GaInP. Elastic

constants C11 and C12 are calculated with Vegard’s law using values

from Ref. [16] for binary compounds. The Poisson’s ratio is v = C12/

(C11 ? C12), and the Shear modulus is G = (C11 - C12)/2

Material xIn C11 (GPa) C12 (GPa) m G (GPa)

TS-GaInP 0.34 127.1 60 0.321 33.55

CS-GaInP 0.62 116.1 58.4 0.335 28.86

Fig. 4 Tangential stress component above a misfit dislocation

calculated for a CS-GaInP and b for TS-GaInP layers. The AFM

cross-sections in (a) and (b) are measured along the lines in Fig. 3c

and d, respectively
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Abstract
We combine nanoimprint lithography and molecular beam epitaxy for the site-controlled
growth of InAs quantum dot chains on GaAs(100) substrates. We study the influence of
quantum dot growth temperature and regrowth buffer thickness on the formation of the quantum
dot chains. In particular, we show that by carefully tuning the growth conditions we can achieve
equal quantum dot densities and photoluminescence ground state peak wavelengths for
quantum dot chains grown on patterns oriented along the [011], [011̄], [011] and [001]
directions. Furthermore, we identify the crystal facets that form the sidewalls of the grooves in
the differently oriented patterns after capping and show that the existence of (411)A sidewalls
causes reduction of the QD density as well as sidewall roughening.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum dots (QDs) have attracted a great deal of
research interest during the past two decades owing to
numerous electronic and photonic applications [1]. The
self-assembled InAs/GaAs QD system (SAQD) obtained by
using the Stranski–Krastanov (SK) growth mode fulfills the
requirements (i.e. homogeneity, density and quality) for the
fabrication of important photonic devices, such as laser diodes
or detectors. Nevertheless, more recent applications, such as
single-photon emitters [2] or nanophotonic waveguides [3],
require fabrication of QDs on pre-determined locations. This
site-controlled growth mode may target either formation of
a single dot or quantum dot chains (QDC). The traditional
methods used so far for the positioning of InAs QDCs include
the use of patterning by e-beam lithography patterning [4],
cleaved-edge overgrowth [5] or selective-area growth [6].
Spontaneously assembled In(Ga)As QDCs have been achieved
by InGaAs/GaAs superlattice growth [7] and by exploiting the
strain fluctuations in dislocation patterned templates [8]. As an

alternative method for the fabrication of site-controlled InAs
QDCs, we use a combination of UV-nanoimprint lithography
(UV-NIL) and molecular beam epitaxy (MBE). We have shown
that this technique enables the simultaneous growth of high
optical quality QDCs along four different crystal directions,
[011], [011̄], [010] and [001] [9].

The formation of InAs QDs on patterned GaAs is strongly
influenced by the surface morphology. In particular, the
diffusion of indium atoms on patterned surfaces is determined
not only by growth conditions but also by the nature of the
crystal facets that form the pattern. While the evolution
of the surface morphology of GaAs micropatterns has been
thoroughly investigated [10–12], faceting of the grooves
having a width below 100 nm has been less studied. In
this paper, we analyze the effect of varying the thickness of
the buffer grown prior to the QD formation on the density
and lateral ordering of InAs QDCs oriented along [011],
[011̄], [010] and [001]. In the same context, we analyze the
influence of the QD growth temperature. In particular, we
show that QDs formed in grooves with different orientations

0957-4484/11/295604+07$33.00 © 2011 IOP Publishing Ltd Printed in the UK & the USA1
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Figure 1. AFM pictures of QDCs grown on RGBs with different thicknesses. In (a)–(c) [011]-oriented QDCs, in (d)–(f) [011̄]-oriented
QDCs, and in (g)-(i) [010]-oriented QDCs. The height scale in (a)–(i) is 35 nm.

can exhibit equal densities and similar photoluminescence (PL)
peak wavelengths only by a precise adjustment of the growth
parameters. Furthermore, we use an atomic force microscopy
(AFM)-based facet analysis to identify the dominating facets
for each groove orientation and to investigate the effect of
different growth parameters on faceting.

2. Experiment

The investigated samples were prepared in three stages. In the
first stage, a 100 nmGaAs buffer, a 100 nmAlGaAs layer and a
100 nm GaAs layer were deposited at 590 ◦C on n-GaAs(100)
substrates by MBE. Then the samples were ex situ patterned by
UV-NIL. Four 10 mm× 10 mm groove patterns with different
line orientations were processed on each sample. The grooves
were 90 nm wide, 30 nm deep and had a period of 180 nm. The
orientations of the grooves were [011], [011̄], [010] and [001].
The UV-NIL process and chemical cleaning are discussed in
detail in [13]. For a first set of samples, the patterned surface
was covered with a 15, 30 or 60 nm thick GaAs regrowth
buffer (RGB) at 490 ◦C. After the buffer growth 2.2 ML of
InAs was deposited at 515 ◦C to form QDs. For a second set

of samples the thickness of the RGB was fixed to 60 nm and
the QD growth temperature was varied; we used temperatures
of 505, 515 and 525 ◦C. AFM was used for investigating
the lateral ordering of the QDs as well as for analyzing the
morphology of the patterned surface [14]. The density of QDs
on each sample was estimated from 3 μm × 3 μm scanning
electron microscopy images. Room temperature PL was used
for analyzing electronic properties of the QDCs. The results
for the [001]-oriented patterns are not discussed in this analysis
because they are identical to those corresponding to the [010]
direction due to the crystallographic symmetry.

3. Experimental results

3.1. Regrowth buffer thickness

First, we investigated the effect of the RGB thickness on the
formation of QDCs with different orientations. Figure 1 shows
the AFM micrographs of the QDCs grown at 515 ◦C on 15, 30
and 60 nm thick RGBs. AFM pictures verify the formation
of ordered QDCs for all orientations, i.e. [011], [011̄] and
[010], and all RGB thicknesses. As shown in figures 1(a)–(c),

2
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Figure 2. Room temperature PL spectra for QDC grown at 515 ◦C on 15 nm (black line) and on 60 nm (red line) RGBs. (a)–(c) correspond to
[011]-, [011̄]- and [010]-oriented QDCs, respectively.

Table 1. QD densities for samples with different orientation and
RGB thicknesses.

Pattern orientation

RGB thickness
(nm)

[011]
(×1010 cm−2)

[011̄]
(×1010 cm−2)

[010]
(×1010 cm−2)

15 1.2 0.6 1.3
30 1.3 1.0 1.3
60 1.3 1.2 1.3

QDs form also on the ridges of the [011]-oriented pattern and
the density of these additional QDs increases with increasing
RGB thickness. According to figure 1(d), the QD density on
15 nm RGB is clearly lower for the [011̄] pattern than for the
[011] pattern. Furthermore, figure 1(d) shows roughness on
the groove sidewalls. As the RGB thickness is increased to
30 nm (figure 1(e)), the roughness on the [011̄] pattern gets
less pronounced on the groove sidewalls and the QD density
increases, but is still lower than on the [011] pattern. Finally,
for 60 nm RGB (figure 1(f)) the roughness on the sidewalls of
the [011̄] pattern is further reduced and the QD density matches
the density on the [011] pattern. Similar AFM pictures for
the [010] pattern are shown in figures 1(g)–(i), which reveals
that the QD density and ordering seem to be independent of
the RGB thickness for the [010] pattern orientation. The QD
densities for each groove orientation and RGB thickness are
listed in table 1. The average height of the uncapped QDs on
all patterns shown in figures 1(a)–(i) is about 12 nm, regardless
of the groove orientation of the sidewall morphology. This
indicates that the QD formation at the bottom of the groove
is not affected by the sidewalls.

Figure 2 shows room temperature PL spectra for QDCs
grown at 515 ◦C on 15 and 60 nm thick RGBs. For
15 nm RGB the ground state peak wavelengths of the
[011]-, [01̄1]- and [010]-oriented QDCs (figures 1(a), (d) and
(g)) are 1183 nm, 1212 nm and 1295 nm, respectively. Once
the RGB thickness is increased to 60 nm (figures 1(c), (f)
and (i)), the QDC ground state emission peaks at 1181 nm,
regardless of the groove orientation.

Table 2. QD densities for samples with different pattern orientation
and QD growth temperatures.

Pattern orientation

Growth T
( ◦C)

[011]
(×1010 cm−2)

[011̄]
(×1010 cm−2)

[010]
(×1010 cm−2)

505 2.9 1.6 1.9
515 1.3 1.2 1.3
525 0.9 0.7 0.9

3.2. Quantum dot growth temperature

Figure 3 shows AFM pictures of QDCs grown at temperatures
of 505, 515 and 525 ◦C on [011], [011̄] and [010] patterns
covered with a 60 nm thick RGB. A similar temperature
dependence of the QDC formation is observed for all pattern
orientations; a high density of small QDs is formed at 505 ◦C
and with increasing growth temperatures the QD density
decreases and the QD size increases. The average height of
the QDs grown at temperatures of 505 ◦C, 515 ◦C and 525 ◦C
is 7 nm, 12 nm and 13 nm, respectively. The formation of QDs
on the ridges is most prominent on the [011]-oriented pattern
(figures 3(a)–(c)), while no QDs are observed on the ridges of
the [011̄]-oriented pattern at any of the growth temperatures
used (figures 3(d)–(f)). On the [010]-oriented pattern, QDs are
formed on the ridges only at 505 ◦C (figure 3(g)). Furthermore,
figure 3(f) shows that, in the case of the 60 nm RGB, [011̄]-
oriented grooves only exhibit sidewall roughening after QD
growth at 525 ◦C. Similar roughening was observed for this
pattern orientation for the RGB thicknesses of 15 and 30 nm
when the QDs were grown at 525 ◦C (figures 1(e)–(f)). The QD
densities for each groove orientation and growth temperature
are listed in table 2.

Figure 4 shows room temperature PL spectra for QDCs
grown at different temperatures on 60 nm thick RGBs.
According to figures 4(a)–(c), the QDCs grown at the
temperatures of 515 ◦C and 525 ◦C have ground state peak
wavelengths of 1181 nm and 1200 nm, respectively, regardless
of the groove orientation. The shift of the PL peak wavelength

3
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Figure 3. AFM pictures of QDCs grown at different temperatures. In (a)–(c) [011]-oriented QDCs, in (d)–(f) [011̄]-oriented QDCs and in
(g)-(i) [010]-oriented QDCs. The height scale in (a)–(i) is 35 nm.

Figure 4. Room temperature PL spectra for QDC grown on 60 nm thick RGBs at 515 ◦C (black line) and at 525 ◦C (red line).
(a)–(c) correspond to [011]-, [011̄]- and [010]-oriented QDCs, respectively.

is consistent with the increase of the height of the uncapped
QDs (figure 3) as a function of the QD growth temperature.

3.3. Facet analysis

In order to explain the differences in the QD densities on
differently oriented patterns we have analyzed the evolution of

the groove morphology as a function of the RGB thickness.
Figure 5 shows AFM line scans taken across the [011]-,
[011̄]- and [010]-oriented grooves before the regrowth and
after covering them with 15, 30 and 60 nm thick RGBs. As
shown in figure 3(a), the initially 30 nm deep grooves in
the [011]-oriented pattern fill rapidly as the RGB thickness

4
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Figure 5. AFM line scans taken from figures 1(a)–(i) along the black
lines. (a)–(c) show cross sections of [011]-, [011̄]- and
[010]-oriented patterns, respectively. The curves are offset vertically
for the sake of clarity.

increases leading to a reduction of the groove depth and
sidewall slope. After covering them with a 60 nm RGB the
groove depth is 7 nm and (100) plateaus are observed on the
ridges of the pattern. The cross section of the [011̄]-oriented
pattern (figure 5(b)) shows much clearer faceting with steeper
sidewalls than in the [011]-oriented grooves in figure 5(a).
Consequently, [011̄]-oriented grooves are 16 nm deep after
covering with a 60 nm RGB. Figure 5(b) also shows that the
facet angle is the same for 15 and 30 nm RGBs and it decreases
as the RGB thickness is increased to 60 nm, which indicates a
change of the sidewall facet planes. Figure 5(c) shows that
the depth of the [010]-oriented grooves after covering with
60 nm RGB is 12 nm. In this case, a change of the facet
angle is observed when the RGB thickness is increased from
15 to 30 nm, while no change is observed with an increase
from 30 to 60 nm. The evolution of the groove shape at the
regrowth step is dictated by a preferred diffusion of Ga atoms
in the [011̄] direction [15], which causes the filling of the [011]-
oriented grooves much faster than the [011̄]- or [010]-oriented
grooves. The morphological evolution of the [010]-oriented
pattern during the GaAs capping process is an intermediate
form of the [011] and [011̄] orientations because it is at 45◦
angle with respect to both of them.

In order to identify the facet planes that form the groove
sidewalls in patterns with different orientations, we have
performed a facet analysis for the AFM pictures (figures 1
and 2). Figure 6 shows the facet angle distribution as a
function of RGB thickness for [011]-, [011̄]- and [010]-
oriented grooves. As shown in figure 6(a), the sidewalls of
the [011]-oriented grooves are composed of (611)B facets for
the RGB thicknesses of 15 and 30 nm. The small peak at
0◦ is originated from the (100) plateaus on the pattern ridges.
After covering the [011]-oriented pattern with a 60 nm thick
RGB, the facet distribution is dominated by (100) plateaus,
and therefore it is impossible to identify the sidewall facets.
The existence of the (100) plateaus in the [011] explains the
formation of the additional QDs on the pattern ridges as shown
in figures 1(a)–(c) and 3(a)–(c). In the case of the [011̄]-
oriented grooves (figure 6(b)), the facet analysis reveals that,
after being capped with 15 or 30 nm RGB, the (411)A facets
are dominating. In the latter case, (611)A facets begin to
appear and dominate as the RGB thickness is increased to
60 nm. The change of the dominating facets in the [01̄1]-
oriented grooves as the RGB thickness is increased from 30
to 60 nm is also evident from the AFM line scans shown in
figure 5(b). Note that in figure 6(b) the peaks at 0◦ result from
the bottom of the grooves, not from the ridges. Furthermore,
the existence of (411)A facets in the [011̄]-oriented grooves is
accompanied by the roughening of the groove sidewalls and
a low QD density, shown in figures 1(d) and (e), compared
with the [011]-and [010]-oriented QDCs grown at the same
growth conditions. As shown in figure 6(c), the sidewalls of
the [010]-oriented pattern are formed by {410} facets when the
RGB thickness is 15 nm, while the {510} facets dominate when
the RGB thickness is increased to 30 or 60 nm. This change of
the facet angle was also observed in the AFM line scans shown
in figure 5(c). A minor contribution to the signal from the (100)
ridges appears when the RGB thickness is increased to 60 nm.
The formation of the additional QDs on the ridges (figure 3(g))
is associated with the existence of (100) plateaus. Thus, QDs
appear on the ridge only if the top of the ridge is formed by a
(100) plane. The insets in figures 6(a)–(c) illustrate the two-
dimensional facet angle distributions for an RGB thickness
of 60 nm. The broad background in the insets is caused by
the QDs.

Figure 7 shows the facet angle distributions as a function
of QD growth temperature for the [011]-, [011̄]- and [010]-
oriented patterns covered with 60 nm RGB. No change is

Figure 6. Facet analysis for the AFM pictures shown in figures 1(a)–(i). The curves in (a)–(c) show surface slope angle distributions after
capping the NIL patterned surface with 15, 30 and 60 nm of GaAs for [011]-, [011̄]- and [010]-oriented grooves, respectively. The insets show
two-dimensional angle distributions after capping with 60 nm of GaAs. The QD growth temperature in each sample was 515 ◦C.
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Figure 7. Facet analysis for the AFM pictures shown in figures 2(a)-(i). The curves in (a)–(c) show surface slope angle distributions after QD
growth at 505 ◦C, 515 ◦C and 525 ◦C for [011]-, [011̄]- and [010]-oriented grooves, respectively. The RGB thickness in each sample was
60 nm.

observed for the facets of the [011]- and [010]-oriented patterns
(figures 7(a) and (c)). However, the sidewall facets of the
[011̄]-oriented grooves change from (611)A to (411)A as the
QD growth temperature is increased from 515 to 525 ◦C. This
indicates that the morphology of the groove pattern changes
when the substrate temperature is increased after the RGB
growth. The existence of the (411)A sidewalls is also in this
case accompanied by the sidewall roughening and a low QD
density (figure 3(f)).

4. Discussion

As shown in figures 1 and 3, well-defined QDCs were obtained
in the grooves of all patterns for all growth parameters used.
However, additional QDs accumulate on the ridges of the [011]
pattern at all tested growth parameters. On the [010] pattern
these additional QDs appear only when QDs are grown at
505 ◦C on a 60 nm thick RGB. On the [011̄] pattern QDs
form only in the grooves for all tested growth conditions.
According to tables 1 and 2, the QD densities on [011]-, [011̄]-
and [010]-oriented grooves are similar only when QDs are
grown at 515 ◦C on a 60 nm thick RGB. The ground state
peak wavelengths of the PL spectra shown in figure 2 for
QDCs grown at 515 ◦C on 15 and 60 nm RGBs are only
partly consistent with the heights of the uncapped QDs on the
corresponding patterns. The [011]-, [011̄]- and [010]-oriented
QDCs grown on the 60 nm thick RGBs have similar heights
and peak wavelengths. However, the QDCs with different
orientations grown on the 15 nm RGBs have different peak
wavelengths although the QD sizes are similar. Furthermore,
the peak wavelength is redshifted for QDCs that are grown
in deeper grooves. This discrepancy indicates that the groove
morphology has an influence on either the QD composition or
intermixing during the capping process although the sizes of
the uncapped dots are similar.

According to figure 3, the size of the QDs grown on 60 nm
RGBs increases with the increasing growth temperature, which
causes the PL redshift shown in figure 4. The amount of
redshift is similar for all pattern orientations. At the QD growth
temperature of 505 ◦C we observe an accumulation of QDs
on the ridges of the [011]-oriented pattern (figure 3(a)) and
to a lesser extent on the [010]-oriented pattern (figure 1(g)).
The formation of the additional QDs on the ridges accounts
for the differences in the QD densities for different pattern

orientations; in this case the QD densities at the bottom of the
grooves are similar. With all other tested growth conditions
the QD densities on the [011] and [010] patterns are equal
and slightly larger than on the [011̄] pattern. We attribute
the varying QD densities on the differently oriented patterns
to the anisotropic diffusion of In atoms on the GaAs surface.
Indium atoms exhibit a larger activation energy, and thus a
larger diffusion length, on the GaAs(100) surface for migration
in the [011] direction than in the [011̄] direction [16]. This
impedes In diffusion from the ridges to grooves on the [011̄]-
oriented pattern. However, this approach assumes a planar
(100) surface and thus does not necessarily apply for the
migration of In atoms on a patterned substrate. Moreover, as
shown in figures 1(d), (e) and 3(f), the low QD density in the
grooves of the [011̄] pattern is accompanied by the roughening
of the groove sidewalls.

The AFM facet analysis (figures 6 and 7) revealed that
the sidewall angle of the grooves decreased with increasing
RGB thickness. This observation was also confirmed by the
AFM line scans shown in figure 5. Furthermore, according
to figure 7(b), the dominating facet of the grooves covered
with a 60 nm thick RGB changes from (611)A to (411)A as
the QD growth temperature is increased from 515 to 525 ◦C.
We attribute this morphological change to minimization of the
surface energy. The temperature ramp to 525 ◦C before QDC
growth provides enough thermal energy for transformation
of sidewall facets to (411)A, which has a surface energy
comparable to low index GaAs surfaces [17]. As shown in
figures 1(d), (e) and 3(f), the existence of (411)A facets
is accompanied by roughening of the groove sidewalls. We
suggest that In adatoms accumulate on the (411)A plane
and crystallize as small InAs mounds, which is observed
as sidewall roughening and leads to a lower QD density at
the bottom of the grooves. This conclusion is supported by
earlier findings by Kitada et al which showed that on patterned
GaAs(100) surface with (411)A sidewalls, the migration of In
adatoms is stronger upwards than downwards on the (411)A
facet [18]. Furthermore, it has been shown that, under
As-rich conditions, (411)A plane forms a nanoscale rough
surface composed of (311)A and (511)A microfacets [19],
which might launch the accumulation of In atoms on the
groove sidewalls. Finally, it should be noted that the AFM-
based facet analysis is not absolutely accurate for nanoscale
patterns. Therefore, the determined sidewall angle may deviate
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approximately 1◦ from the actual angle. Because of this
experimental error, we cannot exclude the possibility of the
occurrence of vicinal (100) surfaces, characterized by a high
density of monolayer steps formed at the sidewalls. This kind
of surface has been shown to be a favorable accumulation site
for In atoms on shallow-patterned GaAs(100) [20]. However,
the deviation of the sidewall angles, extracted from the facet
analysis, is small enough to allow an unambiguous facet
identification.

5. Conclusions

We studied the effects of QD growth temperature and
RGB thickness on the formation of ordered QDCs on
[011]-, [011̄]-, [010]-and [001]-oriented groove patterns.
We demonstrated that equal QD densities can be obtained
on patterns with different orientations by carefully tuning
the growth parameters. Furthermore, we showed that the
formation of grooves with (411)A sidewalls in the [011̄]-
oriented pattern causes a reduction in the QD density and
sidewall roughening. This was explained by the accumulation
of In adatoms on the (411)A facets.
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We report the influence of InGaAs strain-reducing layers on the optical properties of quantum dot

chains grown on groove patterns oriented along the [011], [01-1], and [010] directions. The

site-controlled InAs quantum dot chains were grown by molecular beam epitaxy on GaAs(100)

substrates patterned by nanoimprint lithography. The InGaAs capping causes a redshift of photolu-

minescence, which depends on the groove orientations. Based on the analysis of the surface mor-

phology before and after capping, we attribute this to variation of composition and effective

thickness of the InGaAs layer in grooves with different orientations. Furthermore, we analyze the

effect of the InGaAs cap thickness on the in-plane polarization anisotropy of the

photoluminescence emission and show that the [01-1]-oriented quantum dot chains experience a

significant increase of polarization anisotropy with increasing InGaAs cap thickness. The increase

of polarization anisotropy is attributed to enhanced interdot coupling due to a reduction of the

barrier height and piezoelectronic potential.VC 2012 American Institute of Physics.
[doi:10.1063/1.3675271]

I. INTRODUCTION

Self-assembled InAs/GaAs QDs (SAQD) obtained by

the Stranski–Krastanov (SK) growth mode provide the ho-

mogeneity, density, and quality required for the fabrication

of important photonic devices, such as laser diodes or detec-

tors. However, more recent applications, such as single-

photon emitters1 or nanophotonics waveguides2 require

deterministic positioning of QDs. This site-controlled SK

growth may target either to the formation of single-dot

arrays, QD molecules, or quantum dot chains (QDC). The

QD nucleation sites are typically defined by E-beam lithog-

raphy,3 focused ion beam implantation,4 or Interference li-

thography.5 Recently, we have shown that the combination

of UV-nanoimprint lithography (UV-NIL) and molecular

beam epitaxy (MBE) also is an effective method for the fab-

rication of site-controlled InAs single dots and QDCs.6–8

However, site-controlled epitaxy of QDs introduces new pa-

rameters during the fabrication and thus, requires a precise

optimization of growth conditions in order to achieve QD

nucleation only in the pre-determined locations. This might

lead to less freedom in adjusting other QD properties, such

as emission wavelength.

In this paper we study the effect of In0.1Ga0.9As capping

on the optical properties of [011]-, [01-1]-, and [010]-

oriented InAs QDCs in groove-like patterns fabricated on

GaAs(100) using MBE and UV-NIL. Capping InAs/GaAs

QDs with an InGaAs strain-reducing layer (SRL) is a well-

known method for redshifting the emission wavelength of

SAQDs grown on planar surface.9–11 However, as far as we

know, there are no reports on using InGaAs capping on QDs

grown on a prepatterned substrates. In particular, for the

QDCs it is worth understanding the influence of the aniso-

tropic InGaAs SRL growth on the optical properties of QDs

grown on grooves with different orientations.

II. EXPERIMENT

The investigated samples were prepared in three stages.

The first stage was MBE growth of the lower part of the het-

erostructure; a 100 nm GaAs buffer, a 100 nm AlGaAs car-

rier confinement layer, and a 100 nm GaAs layer were

deposited at 590 �C on 200 n-GaAs(100) quarter substrates. In
the second stage, the samples were ex situ patterned by UV-

NIL. Four 10� 10 mm2 patterns with different groove orien-

tations were processed on each quarter substrate. The

grooves having a width, depth, and period of 90 nm, 20 nm,

and 180 nm, respectively, were transferred onto the GaAs

surface by dry etching. The details of the UV-NIL process

and chemical cleaning prior to the regrowth are discussed in

Ref. 7. In the final stage, the upper part of the heterostructure

was grown by MBE. First, the chemically cleaned patterned

templates were heat treated under arsenic background at

590 �C for 5 min. Then, the patterned surface was covered

with a 60 nm GaAs regrowth buffer (RGB) at 490 �C and

2.2 monolayers InAs QDs grown at 515 �C. The QDs were

capped with an In0.1Ga0.9As SRL and a 20 nm GaAs layer at

the same temperature. The thickness of the InGaAs SRL was

0 nm, 3 nm, or 8 nm, depending on the sample. After capping,

the samples were heated to 590 �C for the growth of a 50 nm

GaAs layer, a 50 nm AlGaAs carrier confinement layer, and a

20 nm GaAs capping layer. The samples with the above-

mentioned layer structure were used for optical investigations.

The SAQDs formed on a planar non-patterned area in the mid-

dle of each sample were used as a reference for the analysis of

the optical properties of the QDCs Furthermore, we prepared
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a sample with uncapped QDs and samples with QDs covered

only by 3 nm InGaAs or GaAs layer in order to study the evo-

lution of the patterned surface in the capping process. The sur-

face morphology of the uncapped QD samples and samples

with QDs covered only with the 3 nm InGaAs or GaAs layers

were investigated by atomic force microscopy (AFM).12

Optical characterization was performed by room temperature

PL (RT-PL) using excitation at 532 nm. Furthermore, the in-

plane polarization anisotropy of the QDCs was analyzed by

means of polarization-resolved PL measured at 30 K using

excitation at 488 nm.

III. RESULTS AND DISCUSSION

Figure 1 presents AFM pictures of QDCs and SAQDs

before and after capping with a 3 nm InGaAs SRL. As shown

in Figs. 1(a)–1(c), the depth and shape of the grooves after

RGB growth depends on their orientation; [011]-oriented

grooves being the shallowest and [01-1]-oriented grooves the

deepest. Lateral ordering of QDs in the bottom of the

grooves is observed on all patterns. As shown in Fig. 1(a), a

small number of QDs nucleate also on the ridges of the

[011]-oriented pattern. The average height of the uncapped

QDs shown in Figs. 1(a)–1(d) was found to be 12 nm for the

SAQDs and for the QDCs with different orientations. The

height of the additional QDs accumulated on the ridges of

the [011]-oriented groove pattern exhibited average height of

10 nm. Furthermore, AFM analysis of the SAQDs grown on

the planar area and QDCs grown in the grooves with differ-

ent orientations showed similar lateral QD dimensions with a

slight elongation along the [01-1] direction. However, the

exact lateral size of the QDs could not be estimated from the

AFM pictures due error caused by the AFM tip. The struc-

tural properties of QDCs grown on grooves with different

orientations are discussed in detail elsewhere.8 Figures

1(e)–1(h) illustrate the surfaces shown in Figs. 1(a)–1(d),

respectively, after capping with 3 nm of InGaAs. The [011]-

oriented grooves, shown in Fig. 1(e), are fully covered after

capping with a 3 nm InGaAs SRL with a hardly visible

underlying nanopattern, while the [01-1]- and [010]-oriented

grooves (Figs. 1(f) and 1(g)) are still clearly visible after cap-

ping. The capped SAQDs, shown in Fig. 1(h), exhibit a typi-

cal morphology with [01-1]-elongated islands.10 The surface

morphology after capping with 3 nm GaAs layers (not

shown) is similar to Figs. 1(e)–1(h) with the exception that

pits are formed in the cap at the locations of the QDs. This is

a typical feature for InAs QDs during GaAs capping due the

increase of the Ga adatoms surface energy in the strain field

of the InAs QDs.14

AFM line scans across the grooves after QD growth and

after capping with 3 nm InGaAs or GaAs layers are shown in

Fig. 2. The dashed line in Fig. 2(a), corresponding to the

InGaAs capped [011]-oriented grooves, was placed vertically

so that it is located 3 nm above the solid line when looking

at the planar ridge of the pattern. Then we calculated the in-

tegral area between the solid and dashed curves, which is

proportional to the volume of the SRL and QDs. The average

QD size and density were similar in all samples. The line

scans of all other capped surfaces were offset so that the vol-

ume of the capping layer and QDs matched the InGaAs

capped [011]-oriented QDCs. A representative QD is added

to each line scan to illustrate the depth and filling of the

grooves with respect to the QD height. It should be noted

that the QD width in Figs. 2(a)–2(c) is affected by the AFM

scanning along the [0-11] direction. As shown in Fig. 2(a),

FIG. 1. (Color online) AFM pictures of

[011]-, [01-1]-, and [010]-oriented QDCs

and SAQDs in (a)–(d), respectively.

(e)–(h) show the [011]-, [01-1]-, and

[010]-oriented QDCs and SAQDs capped

by 3 nm of InGaAs. The height scale in is

27 nm (a)–(d), 15 nm in (f) and (g), and 5

nm in (e) and (h).

FIG. 2. (Color online) AFM line scans taken along the lines shown in

Fig. 1. (a)–(c) represent [011]-, [01-1]-, and [010]-oriented grooves, respec-

tively. The solid lines show the surface morphologies before capping and

the dashed and dotted lines after capping with 3 nm InGaAs and GaAs

layers, respectively. A line scan of a representative QD is added to each

graph for illustrational purposes.
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the InGaAs SRL forms a quantum wire-like structure on top

of the [011]-oriented QDCs, while the SRL grows much

more uniformly on the [01-1]-oriented QDCs. The capping

behavior of the [010]-oriented QDCs is an intermediate form

of the [011] and [01-1] orientations. It is obvious from Figs.

2(a)–2(c) that the cap layer thickness in the bottom of the

grooves depends on their orientation. The anisotropic cap-

ping is due to the anisotropic adatom migration, which is

stronger in the [01-1] than in the [011] direction, and the dif-

ferences in the initial groove morphology.13 Figures

2(a)–2(c) also show that, regardless of the groove orienta-

tion, the grooves are slightly deeper after GaAs capping than

after InGaAs capping because the Ga adatoms tend to avoid

the proximity of the InAs QDCs while In adatoms accumu-

late around and above the QDCs.14

Figure 3 presents normalized room temperature PL

spectra for QDCs and SAQDs with InGaAs SRL thicknesses

ranging from 0 nm to 8 nm. The insets show the GS peak

shifts with respect to the InGaAs SRL thickness (tSRL) nor-
malized to the value corresponding to tSRL¼ 0 nm. PL maps

(not shown) revealed around 10 meV variations of GS peak

energies over the 10� 10 mm2 patterns due to a temperature

gradient during the growth. Therefore, the locations for the

room temperature PL measurement were carefully chosen

from around the center of the sample where the four patterns

intersect with the planar reference area and similar growth

conditions are provided for each pattern. This enabled accu-

rate analysis of the effect of SRL thickness on the GS peak

position for SAQDs and for QDCs with different orientation

regardless of the non-uniformity. The [011]-oriented QDCs

(Fig. 3(a)) experience a 16 meV redshift with tSRL¼ 3 nm

and a reduced redshift of 6 meV for tSRL¼ 8 nm. The [01-1]-

oriented QDCs (Fig. 3(b)) exhibit a 17 meV and 27 meV red-

shifts for tSRL¼ 3 nm and tSRL¼ 8 nm, respectively. Both the

[010]-oriented QDCs (Fig. 3(c)) and SAQDs (Fig. 3(d)),

show a redshift of 25 meV for tSRL¼ 3 nm, while a slightly

smaller redshift of 20 meV is observed in both samples for

tSRL¼ 8 nm. The [011]-, [01-1]-, and [010]-oriented QDCs

and SAQDs seem to exhibit a saturating redshift with

increasing tSRL. For all other samples except [01-1]-oriented

QDCs, the redshift is slightly reduced when tSRL is increased
to 8 nm. The PL results in Figs. 3(a)–3(c) are consistent with

the observations from of the AFM line scans shown in Figs.

2(a)–2(c): The effective tSRL in the grooves depends on their

orientation. Thus, the GS PL peak shift, due to an increasing

tSRL, is different for each groove orientations. Furthermore,

the InGaAs capping seems to have similar effects on the

emission energy of the [010]-oriented QDCs and SAQDs,

which suggests that these two totally different QD structures

are capped in a similar manner. However, it should be noted

that it is not only the effective tSRL that affects the peak shift

for QDCs with different orientations. We should also con-

sider the accumulation of In atoms due to compressive strain

of the QDs which causes decomposition of the SRL into In-

rich and Ga-rich InGaAs alloys in the grooves and on the

ridges, respectively. The decomposition is controlled by the

adatom migration which is much stronger in the [01-1] than

in the [011] direction. The In accumulation driven by aniso-

tropic migration causes the formation of [01-1]-elongated

islands above InGaAs-capped SAQDs (Fig. 1(h)).14 In

QDCs, the In accumulation is stronger if the QDC is aligned

perpendicular to the preferential adatom migration direction,

while it is weaker for parallel orientation. Therefore, we

expect the In-content of the SRL around the QDCs to be

higher for the [011] than for the [01-1] orientation leading to

the different peak shifts with increasing tSRL. In conclusion,

the saturation of the redshift with increasing tSRL is more

rapid for the [011]- than for the [01-1]-oriented QDCs due to

larger effective tSRL and higher In content above the QDCs.

The [010]-oriented QDCs are in 45� angle with respect to the

preferential adatom migration direction, and therefore the

formation of the In-rich alloy around the QDCs should be

more or less similar to the case of SAQDs on a planar sur-

face, which leads to similar PL peak shift as shown in Figs.

3(c) and 3(d). The anisotropic adatom diffusion during cap-

ping would explain the differences in the rapidness of the

saturation of the redshift for SAQDs and QDCs with differ-

ent orientations. Nevertheless, if the [011]-oriented QDCs

have the highest In content of the SRL above the QDs they

should also show the largest redshift, which is not the case in

Fig. 3. We cannot, however, see the full trend of redshift

from three data points, and therefore it is possible that the

[011]-oriented QDCs experience their maximum redshift for

tSRL< 3 nm.

In order to investigate the effect of SRL on the optical

anisotropy we performed polarization-resolved PL measure-

ment for the InGaAs-capped QDCs. In Ref. 6 we studied the

in-plane polarization anisotropy of GS PL emission for

GaAs-capped QDCs with different orientations and showed

that it can be described by the interplay of intrinsic and ex-
trinsic components. The intrinsic polarization anisotropy is

FIG. 3. (Color online) Room temperature PL spectra for [011]-, [01-1]-, and

[010]-oriented QDCs and SAQDs in (a)–(d), respectively. The solid line rep-

resents QDs with 0 nm, the dashed line QDs with 3 nm, and the dotted line

QDs with 8 nm InGaAs SRL. The inset in each graph shows the the GS peak

shift (DE) with respect to the InGaAs SRL thickness (tSRL).

014306-3 Hakkarainen et al. J. Appl. Phys. 111, 014306 (2012)



caused by a typical slight QD shape elongation in the [01-1]

direction. The extrinsic anisotropy, which tends to align

along the QDC axis, can be caused by lateral interdot cou-

pling and/or an anisotropic potential environment due to ex-

istence of a one-dimensional wetting layer.3 Figures

4(a)–4(c) present the polarization anisotropy for the [011]-,

[01-1]-, and [010]-oriented QDCs with respect to the SRL

thickness. As shown in Fig. 4(a), the GS PL emission of the

[011]-oriented QDCs is polarized along the QDC axis. The

optical anisotropy is not affected by introduction of a 3 nm

SRL, while a small increase of polarization is observed for

the 8 nm SRL. For the [01-1]-oriented QDCs (Fig. 4(b)), we

observe a significant increase of the polarization along the

QDC axis with increasing SRL thickness. As shown in Fig.

4(c), also the [010]-oriented QDCs exhibit a small increase

of polarization anisotropy when capped with 3 or 8 nm

InGaAs SRLs. However, polarization anisotropy of the [010]-

oriented QDCs is not oriented along the QDC axis because of

the interplay of the intrinsic and extrinsic effects: The intrinsic

anisotropy causes polarization in the [01-1] and the extrinsic

anisotropy in the [010] direction. As a result, we observe

optical anisotropy that is aligned in between the direction of

the QD shape elongation and the QDC axis. The results of

Figs. 4(a)–4(c) are summed up in Fig. 4(d) which shows the

polarization anisotropy as a function SRL thickness.

As shown in Fig. 4, the effect of InGaAs-capping on the

polarization anisotropy is much stronger for [01-1]-oriented

QDCs than for the other two QDC orientations. In [01-1]-ori-

ented QDCs, the increase of optical anisotropy in the [01-1]

direction can be caused by either intrinsic or extrinsic

effects. The InAs QD height is strongly reduced during cap-

ping with GaAs, while they tend to preserve their shape dur-

ing InGaAs capping.14 Considering this, it is unlikely that

InGaAs capping would increase the intrinsic anisotropy so

significantly. Therefore, the strong increase of the polariza-

tion anisotropy by InGaAs capping is most probably due to

the extrinsic effects. As shown in Fig. 2, the growth of

InGaAs SRL on the grooves is highly non-uniform especially

on the [011]-oriented grooves where it forms a quantum-

wire-like low bandgap channels along the QDC orientation.

This anisotropic potential environment around the QDs could

cause an expansion of the carrier wave functions along the

QDC axis enhancing the oscillator strength, and conse-

quently, an increase of the polarization anisotropy along the

QDC chain. However, since the [011]-oriented QDCs are not

much affected by InGaAs capping, this cannot explain the

strong increase of optical anisotropy for the [01-1]-oriented

QDCs. On the other hand, InGaAs capping reduces the QD

confinement which may increase the lateral interdot cou-

pling. From Fig. 1 we know that the average QD center-to-

center distance in the [01-1]-oriented QDCs is clearly

smaller than in the [011]- and [010]-oriented QDCs. More-

over, the shape elongation in the [01-1] direction will reduce

the QD side-to-side distance in the [01-1]-oriented QDCs.

Therefore, we expect the probability for interdot coupling to

be higher for the [01-1] orientation than for the other two

QDC orientations and it is even increased by surrounding the

QDs with a low bandgap InGaAs barrier. Furthermore, the

piezoelectric potential should be taken into account when

discussing the carrier wave functions in strained InAs

QDs.15 The piezoelectric potential has positive (negative)

maxima on the side of the QD in the [01-1] ([011]) direction.

This fundamental property of strained QDs may limit elec-

tronic coupling in the [0-11]-oriented QDCs by forming a

potential barrier in between the neighboring QDs along the

chain. The introduction of an InGaAs SRL reduces the piezo-

electric potential which explains the increase of optical ani-

sotropy of the [01-1]-oriented QDCs with increasing SRL

thickness. So far, evidence of lateral coupling has been

reported for InAs quantum dot molecules16 and strain-

ordered InGaAs multilayer QDCs.17 There are also numer-

ous reports of vertical coupling of stacked InAs QDs.18–20

FIG. 4. (Color online) Ground state PL

polarization for QDCs capped with 0

nm, 3 nm, and 8 nm SRLs. (a)–(c) repre-

sent [011]-, [01-1]-, and [010]-oriented

QDCs, respectively. The solid lines rep-

resent sinusoidal fit curves. The graph in

(d) shows the polarization anisotropy

that is calculated from the minima and

maxima of the fit curves, as a function of

the InGaAs cap thickness for each QDC

orientation.
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In order to get further evidence for the above-mentioned

conclusions we have investigated the polarization anisotropy

as a function of PL energy for the [01-1]-oriented QDCs

with different SRL thicknesses. Figure 5 presents the PL

spectra for polarizations parallel and perpendicular to the

[01-1]-oriented QDCs (Figs. 5(a), 5(c), and 5(e)) as well as

the optical anisotropy spectra calculated from the PL curves

(Figs. 5(b), 5(d), and 5(f)). It should be noted that the peak

positions in Figs. 5(a)–5(c) are not comparable with Fig.

3(b). A careful selection of the measurement location was

not possible in the low temperature PL measurements and

therefore the emission energies in Fig. 5 are affected by the

non-uniformity over the large area pattern. Nevertheless, no

detectable variations of the optical anisotropy were detected

over the pattern area. The GaAs capped QDCs (Fig. 5(a) and

5(b)) exhibit a constant anisotropy at the GS PL peak energy,

while there is a peak in the anisotropy on the high energy

side of the first excited state (ES1). The introduction of a 3

nm InGaAs SRL (Fig. 5(c) and 5(d)) increases the GS PL an-

isotropy and a polaraization anisotropy peak begins to appear

on the low energy side of the GS peak in Fig. 5(d). Further-

more, an anisotropy peak is still observed on the high energy

side of the ES1 PL peak in Fig. 5(d). Finally, with an 8 nm

SRL (Figs. 5(e) and 5(f)) we see a clear peak in the anisot-

ropy (Fig. 5(f)) on the low energy side of the GS transition

and the anisotropy peak around the ES1 PL energy has

increased and shifted on the low energy side of the ES1 PL

transition.

Bhattacharyya et al. have studied the effect of the QD

shape elongation on the polarization anisotropy of InAs

SAQDs.21 According to their simulations, the polarization

of the GS and ES PL emission is caused by a polarization-

dependency of the oscillator strength due to the QD size

asymmetry. A local maximum of the polarization anisot-

ropy that is slightly offset from the ES1 PL peak energy is

caused by an energy splitting of the p [011] and p [01-1]

orbitals. However, the peak in the polarization anisotropy

on the low energy side of GS PL peak observed in Fig. 5(d)

and more strongly in Fig. 5(f) suggests energy splitting also

in the GS. The energy splitting of the GS cannot be

explained by an intrinsic polarization anisotropy. On the

other hand, it is well known that the s state as well as the

excited states split into bonding and antibonding states

when two atoms or quantum dots bond to form a molecule.

According to several theoretical20,22 and experimental23–25

reports, similar energy level splitting due to electronic cou-

pling occurs also in the InAs/GaAs QD system. The obser-

vation of ground state splitting in the anisotropy spectrum

would require that the oscillator strengths of the transitions

corresponding to the bonding and antibonding states have

different polarization-dependencies. Polarization anisot-

ropy spectra similar to Fig. 5(f) with anisotropy peaking on

the low energy side of the GS PL peak has been observed in

a multilayer stack of vertically coupled InAs QDs by Yu

et al.26 who explain it by the fact that part of the QDs are

coupled also in the lateral direction. These laterally coupled

QDs exhibit stronger polarization anisotropy and lower

transition energy than the rest of the QD population. This is

probable also in the [0-11]-oriented QDCs since only part

of the QDs in the chains have small enough nearest neigh-

bor distance to allow lateral coupling. Therefore, we attrib-

ute the changes in the polarization anisotropy spectra of the

[01-1]-oriented QDCs with increasing SRL thickness to

enhanced interdot coupling between a part of QDs in the

population. According to Refs. 18 and 19 electronic cou-

pling in vertically stacked QDs results in a redshift and

spectral narrowing of PL emission due to a delocalization

of the carrier wave functions. In the case of InGaAs capped

QDCs, the spectral narrowing caused by the electronic cou-

pling is very difficult to detect because the coupling is

enhanced by increasing the SRL thickness, which itself has

an effect on the PL linewidths.27 However, the contribution

of the electronic coupling to the redshift would explain why

the [01-1]-oriented QDCs experience the larges redshift of

the investigated samples when capped with an 8 nm InGaAs

layer.

FIG. 5. (Color online) PL spectra measured from the [01-1]-oriented QDCs

at 30 K for polarizations parallel and perpendicular to the QDC axis. In (a),

(c), and (e) [01-1]-oriented QDCs capped with 0 nm, 3 nm, and 8 nm

InGaAs SRLs, respectively. (b), (d), and (f) present the polarization anisot-

ropy as a function of PL energy calculated from the spectra in (a), (c), and

(e), respectively.

014306-5 Hakkarainen et al. J. Appl. Phys. 111, 014306 (2012)



IV. CONCLUSION

We have shown that the PL emission energy of InAs

QDCs grown on a patterned GaAs(100) surface experience a

redshift during In0.1Ga0.9As capping. The amount of redshift

is different for the [011]-, [01-1]-, and [010]-oriented QDCs

because the effective thickness and composition of the SRL

above the QDCs depends on their orientation with respect to

the preferential adatom migration direction. Compared to

SAQDs, the [011]-oriented QDCs were more sensitive, while

the [01-1]-oriented QDCs were less sensitive to variation of

the SRL thickness. The [010]-oriented QDCs, which are ori-

ented in a 45� angle to the preferential adatom migration

direction, behave similarly to the SAQDs during InGaAs

capping. Furthermore, we showed that the [01-1]-oriented

QDCs exhibit a strong increase of the polarization anisotropy

with increasing SRL thickness, while the introduction of a

SRL had only a marginal effect for the other QDC orienta-

tions. The strong increase of polarization anisotropy is attrib-

uted to enhanced interdot coupling due to a reduction of the

barrier height and piezoelectronic potential.
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Aho, P. Stenberg, M. Dumitrescu, and M. Guina, J. Cryst. Growth 323,
183 (2011).

8T. V. Hakkarainen, J. Tommila, A. Schramm, A. Tukiainen, R. Ahorinta,

M. Dumitrescu, and M. Guina, Nanotechnology 22, 295604 (2011).
9M. Hugues, M. Teisseire, J. -M. Chauveau, B. Vinter, B. Damilano, J. -Y.

Duboz, and J. Massies, Phys. Rev. B 76, 075335 (2007).
10F. Guffarth, R. Heitz, A. Schliwa, O. Stier, N. N. Ledentsov, A. R.

Kovsh, V. M. Ustinov, and D. Bimberg, Phys. Rev. B 64, 085305

(2001).
11D. Litvinov, H. Blank, R. Schneider, D. Gerthsen, T. Vallaitis, J. Leuthold,

T. Passow, A. Grau, H. Kalt, C. Klingshirn, and M. Hetterich, J. Appl.

Phys. 103, 083532 (2008).
12I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-

Herrero, and A. M. Baro, Rev. Sci. Instrum. 78, 013705 (2007).
13H.-C. Kan, R. Ankam, S. Shah, K. M. Micholsky, T. Tadayyon-Eslami,

L. Calhoun, and R. J. Phaneuf, Phys. Rev. B 73, 195410 (2006).
14R. Songmuang, S. Kiravittaya, and O. G. Schmidt, J. Cryst. Growth 249,
416 (2003).

15P. Moon, E. Yoon, W. Sheng, and J.-P. Leburton, Phys. Rev. B 79, 125325
(2009).

16I. Shtrichman, C. Metzner, B. D. Gerardot, W. V. Schoenfeld, and P. M.

Petroff, Phys. Rev. B 65, 081303 (2002).
17Y. I. Mazur, V. G. Dorogan, E. Marega, Jr., G. G. Tarasov, D. F. Cesar, V.

Lopez-Richard, G. E. Marques, and G. J. Salamo, Appl. Phys. Lett. 94,
123112 (2009).

18G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris Jr., Phys.

Rev. Lett. 76, 952 (1996).
19N. N. Ledentsov, V. A. Shchukin, M. Grundmann, N. Kirstaedter,
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Abstract
We report on the effect of post-growth thermal annealing of [011]-, [011̄]-, and [010]-oriented
quantum dot chains grown by molecular beam epitaxy on GaAs(100) substrates patterned by
UV-nanoimprint lithography. We show that the quantum dot chains experience a blueshift of
the photoluminescence energy, spectral narrowing, and a reduction of the intersubband energy
separation during annealing. The photoluminescence blueshift is more rapid for the quantum
dot chains than for self-assembled quantum dots that were used as a reference. Furthermore,
we studied polarization resolved photoluminescence and observed that annealing reduces the
intrinsic optical anisotropy of the quantum dot chains and the self-assembled quantum dots.

(Some figures may appear in colour only in the online journal)

1. Introduction

Thermal annealing has been widely used for improving
material quality and for modifying the properties of semi-
conductor nanostructures, such as quantum wells (QW) [1]
and quantum dots (QDs) [2]. Several studies have been
reported on thermal annealing of self-assembled InAs/GaAs
quantum dots (SAQDs) obtained by the Stranski–Krastanov
(SK) growth mode [3–9]. These experiments have revealed
that group III intermixing in the QD–matrix interface during
thermal annealing leads to blueshift and narrowing of the
optical emission as well as a reduction of the intersubband
energy separation. These properties have allowed us to exploit
thermal annealing, for example, for tuning the response of
QD photodetectors that utilize ensembles of self-assembled
QDs [10]. Furthermore, it has been demonstrated that
post-growth RTA can be used to reduce the fine structure
splitting in InAs SAQDs [11–13].

More recent QD related applications, such as entangled-
photon emitters [14] or nanophotonic waveguides [15]
require a deterministic positioning of QDs with precisely
adjusted optical properties. Recently, we have shown that

formation of site-controlled InAs single dots and quantum
dot chains (QDCs) can be obtained by a combination
of UV-nanoimprint lithography (UV-NIL) and molecular
beam epitaxy (MBE) [16–18]. A precise optimization of
growth conditions is necessary in the site-controlled epitaxy
of QDs in order to achieve QD nucleation only in the
pre-determined locations. This might lead to less freedom
in precise adjustment of other QD properties, such as the
emission wavelength, which is often required for specific
applications. Different growth procedures such as high
temperature capping [19] or indium flushing [20] have been
used for blueshifting the emission of site-controlled QDs.
This paper focuses on post-growth rapid thermal annealing
(RTA) which is a potential method not only for modifying
the spectral properties of site-controlled QDs but also for
reducing the defects caused by the lithography process and
subsequent growth on a non-planar surface. So far, only in
situ annealing experiments, showing a reduction of exciton
linewidths, have been reported on site-controlled QDs [21].

In particular, we study the influence of post-growth RTA
on the optical properties of [011]-, [011̄]-, and [010]-oriented
QDCs grown by MBE on UV-NIL patterned GaAs(100)

10957-4484/12/115702+06$33.00 c© 2012 IOP Publishing Ltd Printed in the UK & the USA
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Figure 1. AFM pictures of [011]-, [011̄]-, and [010]-oriented QDCs and SAQDs in (a)–(d), respectively. The size of the pictures is
500 nm× 500 nm. The height scale is 20 nm in (a)–(c) and 12 nm in (d).

surfaces. We use room temperature, low temperature, and
polarization resolved photoluminescence (PL) experiments
for analyzing the effect of annealing on the optical properties
of the QDCs and the surrounding GaAs matrix.

2. Experiment

The investigated samples were prepared by a three-stage
procedure combining MBE and UV-NIL. First, a 100 nm
GaAs buffer, a 100 nm AlGaAs cladding layer, and a 100 nm
GaAs were deposited at 590 ◦C on quarters of 2′′ n-GaAs(100)
substrates by MBE. Then, the samples were ex situ patterned
by UV-NIL. Four 10 mm × 10 mm groove patterns oriented
along the [011], [011̄], [010], and [001] directions were
processed on each sample. The grooves were 90 nm wide,
30 nm deep, and had a period of 180 nm. In the final stage, the
patterned surface was covered with a 60 nm GaAs regrowth
buffer at 490 ◦C before the deposition of 2.2 ML of InAs
for the QDC formation at 515 ◦C. The QDCs were covered
with a 20 nm GaAs layer grown at 515 ◦C. Subsequently, the
sample temperature was increased to 590 ◦C for the growth
of a 50 nm GaAs, a 50 nm AlGaAs layer, and a 20 nm GaAs
capping layer. As a reference for the QDCs, we prepared also a
SAQD sample on an unprocessed n-GaAs(100) substrate. The
layer structure and growth conditions of the QDC and SAQD
samples were identical. Furthermore, a sample with uncapped
QDs was prepared for structural analysis of QDCs and SAQDs
by atomic force microscopy (AFM). The UV-NIL process and

chemical cleaning prior to regrowth are discussed in detail
in [17]. The samples with [011]-, [011̄]-, and [010]-oriented
QDCs are from now on referred to as QDC[011], QDC[011̄],
and QDC[010], respectively.

The RTA process was performed for 2 × 2 mm2

pieces of QDC[011], QDC[011̄], QDC[010], and SAQD
reference sample. The samples were proximity-capped [22]
and annealed on a silicon wafer, face up in N2 atmosphere
at a temperature of 720 ◦C. The temperature was controlled
by an optical pyrometer. The annealing was performed in
a sequence of 100 and 200 s steps. Room temperature PL
(RT-PL) was measured from as-grown samples and after each
annealing step using excitation at 532 nm and detection with
an InGaAs photodiode. Furthermore, PL emission from the
GaAs matrix and wetting layer was measured with a CCD
detector before and after the annealing procedure. In order
to further analyze the effect of RTA on the optical properties
of the QDCs and SAQDs, we also measured low temperature
PL (LT-PL) and polarization resolved PL (PR-PL) from each
sample piece before and after the annealing sequence. The
LT-PL and PR-PL measurement was performed at 30 K in a
closed-cycle cryostat using excitation at 488 nm and detection
with an InGaAs photodiode.

3. Results and discussion

The AFM pictures in figure 1 show the surface morphology
of the uncapped QDCs and SAQDs. The QDCs grown in the

2
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Figure 2. The evolution of RT-PL during post-growth RTA at
720 ◦C. (a) and (b) represent [011̄]-oriented QDCs and SAQDs
samples, respectively.

[011]-, [011̄]-, and [010]-oriented grooves are illustrated in
figures 1(a)–(c) and the reference SAQDs in (d). The average
QD height and density in the QDC and SAQD samples are
12 nm and about 1.3× 1010 cm−2. The structural and optical
properties of the QDCs are reported in [16] and [18].

Figure 2 shows RT-PL spectra measured from the
QDC [1] and SAQD reference samples before annealing and
after each annealing step. The RT-PL intensity of the as-grown
QDCs is 11–24% compared with the reference SAQDs [16].
The evolution of RT-PL during annealing is not shown for
QDC[011] and QDC[010] because the results are similar to
those of QDC[011̄]. Both samples (figure 2) show blueshift
of the RT-PL emission with increasing annealing time. The
ground state (GS) peak intensity of QDC[011̄] (figure 2(a))
increases during the first annealing steps. Further increase of
annealing time causes a constant decrease of the GS peak
intensity. As shown in figure 2(b), the SAQDs experience
a constant decrease of the peak intensity during the whole
annealing sequence. The evolution of integrated intensity
and GS peak energy EGS during the annealing sequence for
all samples are illustrated in figure 3. The QDC samples
and the SAQDs experience, as a general trend, a decay
of the integrated intensity with increasing annealing time
(figure 3(a)), but the decay is more rapid for the QDCs than
for the SAQDs. All QDC samples show more or less similar
sublinear blueshift of EGS with increasing annealing time (as
shown in figure 3(b)); EGS increases rapidly in the beginning
and starts to saturate towards the end of the annealing
sequence. The EGS of the QDCs after annealing at 720 ◦C

Figure 3. The evolution of PL properties of [011]-, [011̄]-, and
[010]-oriented QDCs and SAQDs during post-growth RTA at
720 ◦C. (a) shows integrated PL intensity and (b) GS peak energy
(EGS) as a function of annealing time.

for 1400 s is approximately 1.19 eV, which corresponds to
a blueshift of 130 meV compared with the as-grown samples.
Contrary to the QDCs, the SAQDs experience a superlinear
increase of EGS with increasing annealing time, resulting in
a total blueshift of only 90 meV within 1400 s annealing.
After 1400 s annealing the blueshift of the SAQDs is far from
saturation, so we decided to perform one more 200 s annealing
step for them to see if the EGS of the SAQDs approaches that
of the QDCs. As shown in figure 3(c), the total blueshift for
the SAQDs reaches 120 meV after the additional annealing
step.

The different annealing behavior of the QDCs and
SAQDs can be understood in terms of defect mediated
diffusion: due to the lithography process and subsequent
MBE growth on a non-planar surface the QDC samples are
expected to possess a higher density of point defects than the
SAQD sample which causes a more a rapid intermixing at the
QD–matrix interface. As a result, the blueshift of EGS is more
rapid for the QDCs than for the SAQDs in the beginning of
the annealing sequence. Furthermore, the confinement of the
holes and electrons in the QDs is reduced with increasing EGS.
This in turn causes the reduction of the RT-PL intensity for
both QDCs and SAQDs.

In order to study the effect of annealing on the properties
of GaAs matrices in the QDC and SAQD samples, we
measured the RT-PL emission around the GaAs bandgap.
Figures 4(a) and (b) show the wetting layer (WL) and GaAs
RT-PL emission for the QDC[011̄] and SAQD samples before
and after the annealing sequence. Corresponding spectra
for QDC[011] and QDC[010] are not shown because the
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Figure 4. RT-PL spectra showing WL and GaAs emission from the
QDC[011̄] and SAQD samples in (a) and (b), respectively. The
spectra in (a) and (b) are normalized to the GaAs peak of the
as-grown SAQDs. The light and dark gray peaks illustrate PL
emission from n-GaAs substrate and MBE grown undoped GaAs,
respectively.

results are similar to those of QDC[011̄]. Both figures 4(a)
and (b) show the same main features: the PL signal of the
highest excited QD states on the low energy side of the
spectra, the WL peak at 1.34 eV, and the GaAs peak at
1.43 eV. The intensities of all three contributions increase
during annealing. The increased RT-PL from the QDs above
1.25 eV can be attributed to the blueshift of the QD
spectrum. The increase in the WL intensity can be attributed
either to reduced carrier confinement of the QDs due to
QD–matrix intermixing and/or improvement of the matrix
quality, i.e. annealing of the defects in the bulk and at the
interfaces reducing non-radiative recombination. Therefore,
the influence of annealing on the GaAs matrix PL requires
careful consideration. As shown in figure 4(a), the GaAs
peak measured from the as-grown QDC[011̄] sample is broad.
After annealing it is narrower, more intense, and slightly
redshifted. In order to explain these changes, we consider the
contributions from both the undoped GaAs matrix and the
underlying n-GaAs substrate. The light gray and dark gray
peaks in figure 4(a) show RT-PL emission measured from
a bare n-GaAs substrate and from an undoped MBE grown
GaAs layer. A comparison of the shapes of these peaks with
the GaAs peaks of the as-grown and annealed QDC[011̄]
shows that most of the GaAs peak intensity measured from the

Figure 5. LT-PL spectra measured at 30 K before and after
annealing. (a)–(d) represent QDC[011], QDC[011̄], QDC[010], and
SAQD samples, respectively.

as-grown QDC[0-11] originates from the n-doped substrate.
The annealed sample shows a narrowed and slightly redshifted
GaAs peak which suggests increased contribution from the
undoped GaAs matrix. A quantitative analysis was performed
by fitting a linear combination of the light gray and dark
gray curves to the spectra measured from the as-grown and
annealed QDC[011̄] samples. Approximately 23% of the
GaAs peak intensity measured from the as-grown QDC[011̄]
originates from the undoped GaAs matrix and 77% from the
n-GaAs substrate. The corresponding figures for the annealed
QDC[011̄] are 50% and 50%. This yields a 3.5-fold increase
of the GaAs matrix contribution upon annealing, indicating a
reduction of non-radiative defects in the matrix. The GaAs
peaks of both as-grown and annealed SAQD samples are
dominated by the emission from the undoped GaAs matrix,
and therefore annealing has no clear influence on the peak
shape or position. A comparison of peak intensities shows the
SAQDs experience a 2.5-fold increase of the GaAs matrix PL
in annealing. Compared to the SAQD reference sample, the
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QDC samples experience a larger increase of GaAs matrix PL
upon annealing, indicating a more pronounced reduction of
non-radiative defects in the matrix.

The well-known effects of post-growth RTA on the
optical properties of InAs SAQDs include blueshift, spectral
narrowing, reduction of intersubband energy separation, and
increase of low temperature PL intensity [5, 23]. The
room temperature PL spectra (figure 2) showed a clear
blueshift for both QDC samples and for the SAQD reference
sample. In order to assess the other effects of annealing
on the optical properties of QDCs we also measured low
temperature PL spectra from as-grown and annealed QDC
and SAQD samples. The results are shown in figure 5.
The GS peak intensity of the as-grown QDC samples is
approximately 60% compared with the SAQD reference.
The annealed QDC[011], shown in figure 5(a), exhibits
slightly reduced LT-PL intensity, while the LT-PL intensity of
QDC[011̄], QDC[010], and SAQDs increases upon annealing.
Furthermore, the LT-PL spectra in figures 5(a)–(d) show that
annealing causes blueshift, spectral narrowing, and reduction
of intersubband energy separation in all samples investigated.
The low LT-PL intensity of the annealed QDC[011] could
be due to a reduced number of the optically active QDs
after the annealing process. This is supported by the fact that
the spectrum of the annealed QDC[011] is more saturated
than the spectra of annealed QDC[011̄], QDC[010], or
SAQD, although all investigated samples have similar QD
densities [13]. Excluding the reduction of LT-PL intensity in
the QDC[011], the effect of post-growth RTA on the LT-PL
emission from the QDC samples is similar to what has been
reported for SAQDs [5, 23].

In order to investigate the effect of annealing on the
optical anisotropy we performed polarization resolved PL
measurement for the as-grown and annealed QDCs and
SAQDs. The in-plane polarization anisotropy of GS PL
emission can be described by an interplay of intrinsic
and extrinsic components [16]. The intrinsic polarization
anisotropy is caused by the typical slight QD shape elongation
in the [011̄] direction [24] and piezoelectric asymmetry [25]
between the [011] and [011̄] directions. The extrinsic
anisotropy, which tends to align along the QDC axis, can be
caused by lateral interdot coupling [26] and/or an anisotropic
potential environment, for example, due to the existence of
a one-dimensional wetting layer [27]. Figure 6 shows the
GS peak optical anisotropy for the as-grown and annealed
QDCs and SAQDs. The as-grown QDC[011] (figure 6(a))
exhibits optical anisotropy that is oriented along the QDC
axis. The optical anisotropy of QDC[011] increases during
annealing. Compared with the as-grown QDC[011], the
optical anisotropy of the as-grown QDC[011̄] (figure 6(b))
is larger because both intrinsic and extrinsic components
are oriented along the [011̄] direction. However, the optical
anisotropy of QDC[011̄] decreases upon annealing. As shown
in figure 6(c), the as-grown QDC[010] shows an optical
anisotropy aligned in between the [010] and [011̄] directions.
This is caused by the interplay of intrinsic and extrinsic
components that are oriented along the [011̄] and [010]
directions, respectively. The annealed QDC[010] shows a

slightly increased anisotropy that has rotated towards the
[010] directions. The SAQDs (figure 6(d)) show a slight
anisotropy along the [011̄] direction which is reduced upon
annealing.

The effect of annealing on the optical anisotropy of the
QDCs and SAQDs can be understood in terms of a reduction
of the intrinsic anisotropy. In the case of QDC[011] the
reduction of the intrinsic anisotropy causes an increase in the
overall anisotropy because it is oriented perpendicular to the
QDC axis. For the QDC[011̄] we observe an opposite effect
because the intrinsic anisotropy is oriented along the QDC
axis. In QDC[010], the contribution of the extrinsic anisotropy
along the [010] direction is emphasized as the intrinsic
anisotropy along the [011̄] direction decreases, and therefore
we observe the rotation of the optical anisotropy towards the
[010] direction. However, the increase of the overall optical
anisotropy, in addition to the rotation of the polarization,
observed for QDC[010] indicates that the extrinsic component
has also increased during annealing. It should be noted that
annealing may have increased the extrinsic anisotropy in
QDC[011] and QDC[011̄] as well, but it cannot be assessed
from figure 6 because the extrinsic and intrinsic components
are aligned parallel/perpendicular to each other. The reduction
of the intrinsic anisotropy in post-growth RTA can be
attributed to two effects: (i) a reduction of the elastic strain due
to the QD–matrix intermixing during post-growth RTA [28],
and (ii) a decrease of the relative QD size anisotropy due to
a uniform increase of the QD size in all directions [4], the
latter of which may also increase interdot coupling in QDCs
enhancing the extrinsic anisotropy.

4. Conclusions

We have shown that [011]-, [011̄]-, and [010]-oriented QDCs
grown by MBE on UV-NIL patterned GaAs(100) experience
a blueshift of PL emission, spectral narrowing, a reduction
of intersubband energy separation, and an increase in LT-PL
intensity in post-growth RTA. These features were shown
to be similar in QDCs and SAQDs grown on unprocessed
substrates. However, the blueshift is more rapid for the QDCs
than for the SAQDs, indicating more pronounced QD–matrix
intermixing during the annealing process. This is attributed
to a higher density of defects in the GaAs matrix due to the
patterning process and subsequent growth on a non-planar
surface. Furthermore, we have shown that the RT-PL intensity
of the GaAs matrix in the QDC samples experiences a 3.5-fold
increase, compared to a 2.5-fold increase for the SAQD
reference sample during annealing which suggests a more
pronounced reduction of non-radiative defects in the QD
surroundings. PR-PL measurements revealed that the intrinsic
optical anisotropy of both QDCs and SAQDs decreases upon
annealing, which is attributed to a reduction of elastic strain
and QD size anisotropy.
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Abstract 

We study the temperature dependence of the photoluminescence (PL) from InAs quantum dot chains (QDC) grown by 

MBE on [011]- and [01 1]-oriented UV nanoimprint lithography processed groove patterns. We observe an increase of 

PL intensity from the [01 1]-oriented QDCs within the temperature range from 20-70 K, which is attributed to thermally 

activated carrier transport from small quantum dots accumulated on the sidewalls of the [01 1]-oriented grooves to the 

quantum dots at the bottom of the groove. We utilize a rate equation model to quantitatively analyze the carrier transfer 

mechanism. Furthermore, we show that the defect related carrier loss mechanism, which accounts for weak PL 

quenching at low temperatures, is similar for QDCs and self-assembled quantum dots (SAQD) that were used as a 

reference. The carrier loss mechanism that causes the rapid quenching of SAQD PL at high temperatures is identified as 

exciton escape, while for the QDCs it is either single carrier escape or escape of uncorrelated electron-hole pairs. This 

result reveals a significant difference in the carrier dynamics of site-controlled QDCs and SAQDs.  
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1. Introduction 

Lateral ordering of InAs/GaAs quantum dots (QDs) [1] is beneficial for several emerging applications, such as 

entangled-photon emitters [2] or nanophotonic waveguides [3], in which a precise positioning of the QDs with respect 

to the surrounding structure is required. The positioning of InAs/GaAs QDs can be achieved by the site-controlled 

Stranski-Krastanov growth, in which the nucleation sites of the QDs are most commonly defined by E-beam 

lithography [4], focused ion beam implantation [5], or interference lithography [6]. More recently, we have shown that 
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molecular beam epitaxy (MBE) combined with UV nanoimprint lithography (UV-NIL) is a precise and cost-effective 

tool for the deterministic positioning of InAs QDs as quantum dot chains (QDCs) [7,8] and as arrays of single quantum 

dots [9,10]. 

In this paper we focus on the temperature dependency of the photoluminescence (PL) from [01 1]- and [011]-oriented 

InAs QDCs grown by MBE on UV-NIL prepared groove patterns. Such experiments have been widely used for 

identifying the carrier escape and PL quenching mechanisms of self-assembled quantum dots (SAQD) [11,12] as well as 

for studying carrier transfer between different QD families in bimodal [13] or bilayer [14] QD distributions. The 

purpose of the work presented in this paper is to determine the influence of the site-controlled growth on PL quenching 

mechanisms as well as to study the thermally activated carrier transfer between QDCs and small QDs accumulated on 

the sidewalls of the [01 1]-oriented grooves. 

2. Experiment 

The preparation of the investigated sample involved a three-stage procedure. First, a 100 nm GaAs buffer, a 100 nm 

AlGaAs carrier confinement layer, and a 100 nm GaAs were deposited at 590°C on n-GaAs(100) substrate by MBE. In

the second step the sample was ex situ patterned by UV-NIL [9]. The lithography pattern consisted of 90 nm wide and 

30 nm deep grooves with a period of 180 nm. The orientation of the grooves was along the [01 1] direction on one side 

of the pattern and along the [011] direction on the other. Chemical cleaning and oxide removal was performed for the 

sample after the patterning process [9]. In the regrowth step, the patterned surface was first covered with a 60 nm GaAs 

regrowth buffer at 490°C followed by deposition of 2.2 monolayers of InAs at 515°C for QDC formation. The QDCs 

were capped with a 20 nm GaAs layer at 515°C. After that, the sample temperature was elevated to 590°C for the 

growth of 50 nm GaAs, a 50 nm AlGaAs layer,  followed by a 20 nm GaAs capping layer. The growth rates for GaAs, 

AlGaAs, and InAs were 0.6 m/h, 1.2 m/h, and 0.05 m/h, respectively. From now on the QDCs grown on the [01 1]-

and [011]-oriented grooves are referred to as QDC[01 1] and QDC[011], respectively. For reference purposes we 

prepared also a sample with SAQDs grown on unprocessed n-GaAs substrate. This reference sample had the same layer 

structure and growth conditions as the QDC sample.

Transmission electron microscopy (TEM) investigations were carried out for GaAs-capped QDCs and SAQDs using a 

Jeol JEM 3010 microscope operating at 300 kV, equipped with a GATAN slow-scan charge-coupled device camera. 

Cross-sectional TEM foils were prepared in the [011] and [01 1] projections, using mechanical thinning followed by 

Ar-ion milling. The temperature-dependent PL (TD-PL) measurement was carried out in a closed–cycle He-cryostat at 

the temperature range from 20K to 300K. The sample was excited with the 488 nm line of an Ar-ion laser. The TD-PL 

measurements were carried out with excitation powers of 5e-5 W, 5e-4 W, and 5e-3 W focused on a 300 m spot. The 
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PL signal was detected with a 0.5 m monochromator and a Peltier-cooled InGaAs detector. Micro-photoluminescence 

( PL) spectra were measured in a closed-cycle cryostat cooled down to 5 K. The sample was excited through a 

microscope objective (NA=0.82) by the 405 nm line of a GaN diode laser. The PL signal was collected with the same 

objective and detected with a 0.75 m spectrometer and Peltier-cooled CCD camera. The lateral resolution of the PL 

setup is approximately 500 nm. 

3. Results and Discussion 

Figure 1(a) and (b) show cross-sectional dark field TEM (DFTEM) micrographs of QDC[01 1] and QDC[011], 

respectively. The DFTEM micrographs were obtained using the chemical sensitive g=(200) imaging conditions. The 

cross-sectional view of QDC[01 1] along its axis reveals that: (i) the wetting layer (WL) has covered the whole 

patterned surface, (ii) the QDCs are formed in the grooves of the pattern, and (iii) small QDs (SQDs) are nucleated on 

the (n11)A facetted sidewalls [8] of the grooves. A similar g200 DFTEM micrograph of QDC[011] (Fig.1(b)) shows the 

same features except that the grooves are shallower and their sidewalls are less clearly facetted. Furthermore, no SQDs 

are observed in QDC[011] , but some QDs are nucleated on the flat (100) ridges of the groove pattern. The absence of 

SQDs on the sidewalls of the [011]-oriented grooves is probably due to the groove morphology, but we cannot exclude 

the effect of the facet type, which is (n11)B for [011]-oriented grooves [8]. According to the atomic force microscopy 

(AFM) analysis of uncapped QDCs presented in Ref. [8], the QD density in QDC[01 1], QDC[011], and in the SAQD 

sample is around 1.5×1010 cm-2. A comparison of the WL morphologies in Figs. 1(a) and (b) with the AFM results [8] 

shows that the groove depth and the sidewall angle are preserved during capping. 

Figure 2(a)-(c) present TD-PL results for QDC[01 1], QDC[011], and SAQDs, respectively. The insets in Figure 2 show 

PL spectra measured at 20K using three different excitation powers. With the two smallest excitation powers (5e-5 W 

and 5e-4 W) only the ground state (GS) emission is observed. When the excitation power is increased to 5e-3 W the GS 

emission saturates and a peak of the first excited state is observed. It should be noted that the emission from the QDs 

accumulated on the ridges of the [011]-oriented grooves overlaps with the PL peaks of the QDC[011]. Therefore, the 

emission from these QDs is observed as a broadening of the PL peaks of QDC[011], not as separate peaks. The 

temperature dependency of the GS peak PL intensity was determined for QDC[01 1], QDC[011], and SAQDs by fitting 

Gaussian peaks to the PL spectra measured at each temperature point within the range from 20K to 300K. The results 

are shown in the main plots of Fig. 2. As shown in Fig. 2(a), QDC[01 1] exhibits an increase of PL intensity within the 

temperature range from 20 K to 70 K. This effect is clearly observed with the two smallest excitation powers, but nearly 

vanishes when the excitation power is increased to the level that saturates the GS emission. As shown in Fig. 2(b) and 

(c), QDC[011] and the SAQDs exhibit a slow PL quenching below 100 K and a rapid PL quenching at higher 
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temperatures, which suggests a bi-exponential temperature-dependency of the PL intensity. However, no increase of PL 

intensity with increasing temperature is observed for QDC[011] and the SAQDs, where no SQDs were observed in the 

DFTEM micrographs (Fig. 1(a), (b)). Since no PL was detected from the SQDs in QDC[01 1] with the InGaAs 

photodiode, we employed the PL setup equipped with a CCD camera to measure the PL emission around the WL 

peaks of QDC[01 1], QDC[011], and SAQDs. As shown in Fig. 3, all samples exhibit WL emission at around 1.43eV. 

The WL peaks show fine structure which is attributed to monolayer fluctuations. On the low energy side of all spectra in 

Fig. 3 we observe the continuous ensemble PL emission from the highest excited states of QDCs or SAQDs. Notice that 

the PL spectra of QDC[01 1] exhibits narrow emission lines located at energies slightly below the WL peak, while 

such features are not observed for QDC[011] or SAQDs. These narrow emission lines arise from excitons confined to 

the SQDs. Therefore, it suggests that the most probable cause for the increase of PL intensity observed for QDC[01 1]

is carrier transfer [15-18] from the SQDs to the QDs accumulated in the bottom of the grooves. Such thermally 

activated process can be modeled with coupled rate equations. Thus, we propose a rate equation based model for a four-

state system consisting of the GaAs barrier, the WL, and the GS of the QDCs and SQDs. The scheme for the rate 

equation model is presented in Fig. 4. In our model we assume: 

1) We consider carrier populations in the WL, QDCs, and SQDs, which are designated by n1, n2, and n3, respectively. 

2) The carriers are generated from the GaAs barrier to the WL at rate g.

3) Carriers in the WL are captured to the QDCs and SQDs with probabilities c2 and c3, respectively, or are thermally 

excited to the GaAs barrier at rate 1=e1exp(-E1/kT). 

4) The carriers in the QDCs either recombine at rate r2 or escape to the WL at rate 2=e2exp(-E2/kT). 

5) The carriers in the SQDs either recombine at rate r3 or escape to the WL at rate 3=e3exp(-E3/kT). 

6) Radiative recombination in the WL is not taken into account, because the TD-PL measurement was carried out with 

low or moderate excitation power. 

7) The mechanism of the carrier transfer is assumed to be thermal emission from the SQDs and recapture to the QDCs. 

Possibility of nonresonant multiphonon-assisted tunneling [17] is excluded for the sake of simplicity.  

The rate equations of the four-state system shown in Fig. 4 are the following: 
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The temperature dependency of PL from QDC[01 1] is obtained from the steady state solution of the coupled rate 
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equations, which is as follows. 
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Since no SQDs were observed in QDC[011] or in the SAQD sample (Fig. 1(b) and (c)), the temperature dependency of 

their PL intensity can be obtained from Eq. (2) by assuming a zero carrier capture probability from the WL to the SQDs, 

i.e. c3=0. By doing so we get 
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which corresponds to the state solution for a three-level system [18] consisting of the GaAs barrier, the WL, and the 

QDCs.  

The temperature dependency of the PL intensity for QDC[01 1] (Fig. 2(a)) was fitted according to Eq. (2) which takes 

into account the carrier transfer from the SQDs. In the cases QDC[011] and SAQDs (Fig. 2(b) and (c)) the fitting was 

carried out according to Eq. (3) due to the absence of the SQDs. The activation energies of the carrier escape channels 

obtained as fitting parameters are shown in Table 1. The activation energies were determined for excitation powers of 

5e-5 W, 5e-4 W, and 5e-3W. The values in Table 1 are the averages of the values obtained using different excitation 

powers for each sample and the error margins were estimated from the difference of the largest and smallest value.  

As shown in Table 1, the activation energy E1, corresponding to the carrier escape from the WL, is around 14-22 meV 

for both QDCs and SAQDs. Comparison of the values of E1 with the separation of the WL and GaAs PL peaks, which is 

around 150 meV for all investigated samples, reveals that E1 is too small to correspond to the direct emission of carriers 

from the WL to the GaAs band edge. Therefore, we attribute E1 to the thermally activated capture of carriers from the 

WL by nonradiative recombination centers [19-21]. Activation energies of the traps responsible for the quenching of the 

PL from InAs QDs are in the range 17–83 meV [20]. 

As shown in Table 1, the activation energy E2, corresponding to the carrier escape from QDCs or SAQDs, is 220 meV 

for the SAQDs and around 109-116 meV for the QDCs. Three possible mechanisms for carrier escape from QDs have 

been proposed in the literature depending on the relation between the activation energy and the band gap difference 

( Eg): i) Exciton escape when E2= Eg [11,22], ii) single carrier escape when E2< Eg/2 [22], and iii) escape of 

uncorrelated electron-hole pairs when E2= Eg/2 [23]. The energy separation between the WL and the GS PL peaks was 

observed to be 250 meV for both QDCs and SAQDs at the temperature range within which the rapid quenching is 
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observed. We can thus assume that Eg is close to 250 meV. Therefore, it is clear that the predominant carrier escape 

mechanism for the SAQDs is exciton escape. In the case of the QDCs, since E2 is only slightly less than half of the 

separation of the WL and the GS peaks, it can be either single carrier escape or escape of uncorrelated electron-hole 

pairs. The confinement energy of the less bound carrier would determine the activation energy of single carrier escape, 

but since the exact energy level structure of QDCs grown in a groove is unknown, we cannot make a direct comparison. 

However, since both the barrier materials and the ground state peak energies are the same for SAQDs and QDCs, no 

major difference is expected between the confinement energies of these two structures. On the other hand, some point 

defects are expected to form in the regrowth interface of the QDC samples. The electric field induced by the charge 

fluctuations in these point defects is considered as the cause of the exciton linewidth broadening in site-controlled QDs 

[24]. However, it should be noted that the UV-NIL process used in this study has been shown to enable fabrication of 

site-controlled InAs QDs with resolution limited exciton linewidth of 35 eV using a 30 nm GaAs buffer between the 

QDs and patterned surface [10]. Thus the density of point defects is expected to be very low. In this study we are using 

a 60 nm GaAs buffer, which places the QDs even further away from the regrowth interface. Therefore, we can exclude 

the possibility of direct tunneling of carriers from QDCs to the point defects. On the other hand, the electric field 

induced by the charge fluctuations in the point defects may disturb the excitons in the thermal escape process, but it is 

unlikely that this interaction is strong enough to completely break correlation between electrons and holes. Instead, we 

suggest that the carrier dynamics in the QDCs are affected by interdot interaction. The side-to-side distance between the 

neighboring QDs along the chains varies from few nanometers to around 15 nm, which may enable capture or tunneling 

of one carrier type to the neighboring QD during the escape process. In terms of the rate equation model, such process 

would be similar to single carrier escape since electron (hole) escapes the QDC and hole (electron) returns to the QDC 

carrier population n2 by being transferred to the neighboring QD.  

According to Table 1, the activation energy E3 that corresponds to the carrier transfer from the SQDs to QDC[01 1] via 

the WL is 11 meV, which is reasonable considering that the energy separation between the low energy side of the WL 

peak and excitons in the SQDs (Fig. 3) is in the range of 5-50 meV. As shown in Fig. 2(a), the influence of carrier 

transport from the SQDs to QDC[01 1] is significantly reduced when the excitation power is increased up to 5e-3 W. 

Such behavior is expected with high power excitation because the additional carriers thermally released from the SQDs 

cannot significantly increase the PL intensity of the QDCs because the GS emission is already at the saturation level. 
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4. Conclusions 

We have presented a study of carrier dynamics in site-controlled QDCs using temperature-dependent PL and a rate 

equation based model. We have shown that the [01 1]-oriented QDCs exhibit an increase of PL intensity in the 

temperature range from 20-70 K due to thermally activated carrier transport from the SQDs which are accumulated on 

the sidewalls of the [01 1]-oriented grooves. The activation energy for this process was estimated to be 11 meV. 

Furthermore, we have shown that the defect related carrier loss mechanism, which accounts for the PL quenching at low 

temperatures, is similar for QDCs and SAQD. In addition, the carrier loss mechanism that causes the rapid quenching of 

SAQD PL at high temperatures was identified as exciton escape, while for the QDCs it is either single carrier escape or 

escape of uncorrelated electron-hole pairs.  
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Figure 1: Cross-sectional DFTEM micrographs of (a) QDC[01 1] and (b) QDC[011] obtained using the chemically 

sensitive g=(200) imaging conditions.   

Figure 2. Temperature dependency of PL intensity for QDC[01 1], QDC[011], and SAQDs, in (a)-(c), respectively. The 

insets present PL spectra measured at 20K. The squares, circles, and triangles represent measurement data. The solid 

lines in (a) are fit curves according to Eq. (2), and in (b) and (c) according to Eq. (3). 

Figure 3. Micro-PL spectra measured from QDC[01 1], QDC[011], and SAQDs at the temperature of 5 K using 100 W 

excitation at 405 nm.  

Figure 4. Schematic representation of the rate equation model. 
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Table 1. Activation energies of carrier escape channels obtained by fitting the theoretical model to the PL data. The 

activation energies for QDC[01 1] were obtained from Eq. (2), and those for QDC[011] and SAQDs from Eq. (3). 

Sample E1 (meV) E2 (meV) E3 (meV) 

QDC[01-1] 22+/-2 116+/-5 11+/-1 

QDC[011] 14+/-2 109+/-10 -

SAQD 17+/-4 220+/-50  

 We grew site-controlled InAs quantum dot chains (QDC) on NIL patterned GaAs(100).  We 
perform a temperature-dependent PL study.  We develop a rate equation model.  [01-1]-oriented 
QDCs shown increase of PL at 20-70K.  QDCs and reference SAQDs exhibit different carrier 
escape mechanisms.   
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