18 research outputs found

    A technique for sample application in preparative-layer chromatography

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/32159/1/0000214.pd

    Synthesis of the elements in stars: forty years of progress

    Full text link

    A self referencing platinum nanoparticle decorated enzyme-based microbiosensor for real time measurement of physiological glucose transport

    No full text
    Glucose is the central molecule in many biochemical pathways, and numerous approaches have been developed for fabricating micro biosensors designed to measure glucose concentration in/near cells and/or tissues. An inherent problem for microsensors used in physiological studies is a low signal-to-noise ratio, which is further complicated by concentration drift due to the metabolic activity of cells. A microsensor technique designed to filter extraneous electrical noise and provide direct quantification of active membrane transport is known as self-referencing. Self-referencing involves oscillation of a single microsensor via computer-controlled stepper motors within a stable gradient formed near cells/tissues (i.e., within the concentration boundary layer). The non-invasive technique provides direct measurement of trans-membrane (or trans-tissue) analyte flux. A glucose micro biosensor was fabricated using deposition of nanomaterials (platinum black, multiwalled carbon nanotubes, Nafion) and glucose oxidase on a platinum/iridium microelectrode. The highly sensitive/selective biosensor was used in the self-referencing modality for cell/tissue physiological transport studies. Detailed analysis of signal drift/noise filtering via phase sensitive detection (including a post-measurement analytical technique) are provided. Using this highly sensitive technique, physiological glucose uptake is demonstrated in a wide range of metabolic and pharmacological studies. Use of this technique is demonstrated for cancer cell physiology, bioenergetics, diabetes, and microbial biofilm physiology. This robust and versatile biosensor technique will provide much insight into biological transport in biomedical, environmental, and agricultural research applications. (C) 2010 Elsevier B.V. All rights reserved

    Protein intake and lumbar bone density: the Multi-Ethnic Study of Atherosclerosis (MESA)

    No full text
    Dietary protein has been shown to increase urinary Ca excretion in randomised controlled trials, and diets high in protein may have detrimental effects on bone health; however, studies examining the relationship between dietary protein and bone health have conflicting results. In the present study, we examined the relationship between dietary protein (total, animal and vegetable protein) and lumbar spine trabecular volumetric bone mineral density (vBMD) among participants enrolled in the Multi-Ethnic Study of Atherosclerosis (n 1658). Protein intake was assessed using a FFQ obtained at baseline examination (2000-2). Lumbar spine vBMD was measured using quantitative computed tomography (2002-5), on average 3 years later. Multivariable linear and robust regression techniques were used to examine the associations between dietary protein and vBMD. Sex and race/ethnicity jointly modified the association of dietary protein with vBMD (P for interaction = 0·03). Among white women, higher vegetable protein intake was associated with higher vBMD (P for trend = 0·03), after adjustment for age, BMI, physical activity, alcohol consumption, current smoking, educational level, hormone therapy use, menopause and additional dietary factors. There were no consistently significant associations for total and animal protein intakes among white women or other sex and racial/ethnic groups. In conclusion, data from the present large, multi-ethnic, population-based study suggest that a higher level of protein intake, when substituted for fat, is not associated with poor bone health. Differences in the relationship between protein source and race/ethnicity of study populations may in part explain the inconsistent findings reported previously

    BATSE gamma-ray burst line search. I. Search for narrow lines in spectroscopy detector data

    No full text
    Analysis of data from the Spectroscopy Detectors (SDs) of the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory (GRO) has found no convincing line features in the spectra of gamma-ray bursts (GRBs) in almost 3 years of operation, in contrast to expectations based on results from other experiments. In this Letter we discuss the visual search for narrow lines in the SD data. The search has examined 192 bursts, of which ∼18 were intense enough that lines similar to those seen by instruments on the Ginga satellite would have been visible between ∼20 and ∼100 keV. A simplified calculation shows that the BATSE and Ginga results are consistent at the 13% level
    corecore