12 research outputs found

    Low temperature removal of surface oxides and hydrocarbons from Ge(100) using atomic hydrogen

    Get PDF
    Germanium is a group IV semiconductor with many current and potential applications in the modern semiconductor industry. Key to expanding the use of Ge is a reliable method for the removal of surface contamination, including oxides which are naturally formed during the exposure of Ge thin films to atmospheric conditions. A process for achieving this task at lower temperatures would be highly advantageous, where the underlying device architecture will not diffuse through the Ge film while also avoiding electronic damage induced by ion irradiation. Atomic hydrogen cleaning (AHC) offers a low temperature, damage-free alternative to the common ion bombardment and annealing (IBA) technique which is widely employed. In this work, we demonstrate with xray photoelectron spectroscopy (XPS) that the AHC method is effective in removing surface oxides and hydrocarbons, yielding an almost completely clean surface when the AHC is conducted at a temperature of 250 ◦C. We compare the post-AHC cleanliness and (2 × 1) low energy electron diffraction (LEED) pattern to that obtained via IBA, where the sample is annealed at 600 ◦C. We also demonstrate that the combination of a sample temperature of 250 ◦C and atomic H dosing is required to clean the surface. Lower temperatures prove less effective in removal of the oxide layer and hydrocarbons, whilst annealing in ultra-high vacuum conditions only removes weakly bound hydrocarbons. Finally, we examine the subsequent H-termination of an IBA-cleaned sample using XPS, LEED and ultraviolet photoelectron spectroscopy (UPS) in order to examine changes in the work function of Ge(100) upon hydrogenation

    Clinical epigenomics: genome-wide DNA methylation analysis for the diagnosis of Mendelian disorders

    Get PDF
    Purpose: We describe the clinical implementation of genome-wide DNA methylation analysis in rare disorders across the EpiSign diagnostic laboratory network and the assessment of results and clinical impact in the first subjects tested. Methods: We outline the logistics and data flow between an integrated network of clinical diagnostics laboratories in Europe, the United States, and Canada. We describe the clinical validation of EpiSign using 211 specimens and assess the test performance and diagnostic yield in the first 207 subjects tested involving two patient subgroups: the targeted cohort (subjects with previous ambiguous/inconclusive genetic findings including genetic variants of unknown clinical significance) and the screening cohort (subjects with clinical findings consistent with hereditary neurodevelopmental syndromes and no previous conclusive genetic findings). Results: Among the 207 subjects tested, 57 (27.6%) were positive for a diagnostic episignature including 48/136 (35.3%) in the targeted cohort and 8/71 (11.3%) in the screening cohort, with 4/207 (1.9%) remaining inconclusive after EpiSign analysis. Conclusion: This study describes the implementation of diagnostic clinical genomic DNA methylation testing in patients with rare disorders. It provides strong evidence of clinical utility of EpiSign analysis, including the ability to provide conclusive findings in the majority of subjects tested

    Using surveillance data to determine treatment rates and outcomes for patients with chronic hepatitis C virus infection

    Get PDF
    The aim of this work was to develop and validate an algorithm to monitor rates of, and response to, treatment of patients infected with hepatitis C virus (HCV) across England using routine laboratory HCV RNA testing data. HCV testing activity between January 2002 and December 2011 was extracted from the local laboratory information systems of a sentinel network of 23 laboratories across England. An algorithm based on frequency of HCV RNA testing within a defined time period was designed to identify treated patients. Validation of the algorithm was undertaken for one center by comparison with treatment data recorded in a clinical database managed by the Trent HCV Study Group. In total, 267,887 HCV RNA test results from 100,640 individuals were extracted. Of these, 78.9% (79,360) tested positive for viral RNA, indicating an active infection, 20.8% (16,538) of whom had a repeat pattern of HCV RNA testing suggestive of treatment monitoring. Annual numbers of individuals treated increased rapidly from 468 in 2002 to 3,295 in 2009, but decreased to 3,110 in 2010. Approximately two thirds (63.3%; 10,468) of those treated had results consistent with a sustained virological response, including 55.3% and 67.1% of those with a genotype 1 and non-1 virus, respectively. Validation against the Trent clinical database demonstrated that the algorithm was 95% sensitive and 93% specific in detecting treatment and 100% sensitive and 93% specific for detecting treatment outcome. Conclusions: Laboratory testing activity, collected through a sentinel surveillance program, has enabled the first country-wide analysis of treatment and response among HCV-infected individuals. Our approach provides a sensitive, robust, and sustainable method for monitoring service provision across Englan

    Evaluation of DNA Methylation Episignatures for Diagnosis and Phenotype Correlations in 42 Mendelian Neurodevelopmental Disorders.

    Get PDF
    Genetic syndromes frequently present with overlapping clinical features and inconclusive or ambiguous genetic findings which can confound accurate diagnosis and clinical management. An expanding number of genetic syndromes have been shown to have unique genomic DNA methylation patterns (called episignatures ). Peripheral blood episignatures can be used for diagnostic testing as well as for the interpretation of ambiguous genetic test results. We present here an approach to episignature mapping in 42 genetic syndromes, which has allowed the identification of 34 robust disease-specific episignatures. We examine emerging patterns of overlap, as well as similarities and hierarchical relationships across these episignatures, to highlight their key features as they are related to genetic heterogeneity, dosage effect, unaffected carrier status, and incomplete penetrance. We demonstrate the necessity of multiclass modeling for accurate genetic variant classification and show how disease classification using a single episignature at a time can sometimes lead to classification errors in closely related episignatures. We demonstrate the utility of this tool in resolving ambiguous clinical cases and identification of previously undiagnosed cases through mass screening of a large cohort of subjects with developmental delays and congenital anomalies. This study more than doubles the number of published syndromes with DNA methylation episignatures and, most significantly, opens new avenues for accurate diagnosis and clinical assessment in individuals affected by these disorders

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    Learning cultures in further education

    No full text
    This paper examines the nature of learning cultures in English Further Education (FE), as revealed in the Transforming Learning Cultures in FE (TLC) research project. In it, we describe four characteristics of a generic FE learning culture: the significance of learning cultures in every site; the significance of the tutor in influencing site learning cultures; the often negative impact of policy and management approaches; and the ever-present issue of course status. We go on to different types of learning cultures within FE related to the degrees of synergy and conflict between the multiple influences on learning in those sites. In general, sites with greater synergy have more effective learning, pointing to valuable new ways to further improve learning. However, such synergy is sometimes difficult to achieve, and brings further problems in its train. It is important to separate out judgments about learning effectiveness, from equally important ones about learning value. The conceptions of the latter varied from site to site, and were often contested

    Clinical epigenomics: genome-wide DNA methylation analysis for the diagnosis of Mendelian disorders

    Get PDF
    PURPOSE: We describe the clinical implementation of genome-wide DNA methylation analysis in rare disorders across the EpiSign diagnostic laboratory network and the assessment of results and clinical impact in the first subjects tested. METHODS: We outline the logistics and data flow between an integrated network of clinical diagnostics laboratories in Europe, the United States, and Canada. We describe the clinical validation of EpiSign using 211 specimens and assess the test performance and diagnostic yield in the first 207 subjects tested involving two patient subgroups: the targeted cohort (subjects with previous ambiguous/inconclusive genetic findings including genetic variants of unknown clinical significance) and the screening cohort (subjects with clinical findings consistent with hereditary neurodevelopmental syndromes and no previous conclusive genetic findings). RESULTS: Among the 207 subjects tested, 57 (27.6%) were positive for a diagnostic episignature including 48/136 (35.3%) in the targeted cohort and 8/71 (11.3%) in the screening cohort, with 4/207 (1.9%) remaining inconclusive after EpiSign analysis. CONCLUSION: This study describes the implementation of diagnostic clinical genomic DNA methylation testing in patients with rare disorders. It provides strong evidence of clinical utility of EpiSign analysis, including the ability to provide conclusive findings in the majority of subjects tested

    Erratum: Evaluation of DNA Methylation Episignatures for Diagnosis and Phenotype Correlations in 42 Mendelian Neurodevelopmental Disorders (The American Journal of Human Genetics (2020) 106(3) (356–370), (S0002929720300197), (10.1016/j.ajhg.2020.01.019))

    No full text
    (The American Journal of Human Genetics 106, 356–370; March 5, 2020) In the version of this paper originally published, the underlying cause for Hunter McAlpine syndrome was incorrectly described in Table 1. The relevant description has been changed to read “Chr5q35-qter duplication involving NSD1” in the updated Table 1 reflected here. The authors apologize for this error

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
    corecore