357 research outputs found
ESTABLISHING NEW FOUNDATIONS FOR THE USE OF REMOTELY-PILOTED AIRCRAFT SYSTEMS FOR CIVILIAN APPLICATIONS
Abstract. Skyopener is a project funded by the EU through the European GNSS Agency (GSA) in the framework of the Horizon 2020 program. Skyopener's goal is contributing to the roadmap for the integration of civil Remotely Piloted Aircraft Systems (RPAS) into nonsegregated airspace, by providing and testing enabling technologies, in particular with reference to European initiative U-Space, aimed at establishing regulations and infrastructure for integration of unmanned aviation into shared airspace. The main outcomes of the project include: implementing and testing a reliable and secure redundant air-ground communication link, based on satellite and 3G/4G networks; integrating the mission management system and ground station with a UTM (Unmanned aerial system Traffic Management) client, and experimenting UTM services being deployed by one of the partners; demonstrating technical and economic feasibility of long- range missions beyond visual line of sight (BVLOS) by executing corridor mapping on a high-voltage powerline, and airport area surveys (e-TOD: electronic-Terrain Obstacle Database).</p
Ultrasound-guided central venous catheter placement:a structured review and recommendations for clinical practice
The use of ultrasound (US) has been proposed to reduce the number of complications and to increase the safety and quality of central venous catheter (CVC) placement. In this review, we describe the rationale for the use of US during CVC placement, the basic principles of this technique, and the current evidence and existing guidelines for its use. In addition, we recommend a structured approach for US-guided central venous access for clinical practice. Static and real-time US can be used to visualize the anatomy and patency of the target vein in a short-axis and a long-axis view. US-guided needle advancement can be performed in an "out-of-plane" and an "in-plane" technique. There is clear evidence that US offers gains in safety and quality during CVC placement in the internal jugular vein. For the subclavian and femoral veins, US offers small gains in safety and quality. Based on the available evidence from clinical studies, several guidelines from medical societies strongly recommend the use of US for CVC placement in the internal jugular vein. Data from survey studies show that there is still a gap between the existing evidence and guidelines and the use of US in clinical practice. For clinical practice, we recommend a six-step systematic approach for US-guided central venous access that includes assessing the target vein (anatomy and vessel localization, vessel patency), using real-time US guidance for puncture of the vein, and confirming the correct needle, wire, and catheter position in the vein. To achieve the best skill level for CVC placement the knowledge from anatomic landmark techniques and the knowledge from US-guided CVC placement need to be combined and integrated
The microscopic structure of cold aqueous methanol mixtures
The evolution of the micro-segregated structure of aqueous methanol mixtures, in the temperature range 300 K-120 K, is studied with computer simulations, from the static structural point of view. The structural heterogeneity of water is reinforced at lower temperatures, as witnessed by a pre-peak in the oxygen-oxygen structure factor. Water tends to form predominantly chain-like clusters at lower temperatures and smaller concentrations. Methanol domains have essentially the same chain-like cluster structure as the pure liquid at high concentrations and becomes mono- meric at smaller ones. Concentration uctuations decrease with temperature, leading to quasi-ideal Kirkwood-Bu integrals, despite the enhanced molecular interactions, which we interpret as the signature of non-interacting segregated water and methanol clusters. This study throws a new light on the nature of the micro-heterogeneous structure of this mixture: the domain segregation is essentially based on the appearance of linear water clusters, unlike other alcohol aqueous mixtures, such as with propanol or butanol, where the water domains are more bulky.
Importing genetically altered animals : ensuring quality
The reproducibility of research using laboratory animals requires reliable management of their quality, in particular of their genetics, health and environment, all of which contribute to their phenotypes. The point at which these biological materials are transferred between researchers is particularly sensitive, as it may result in a loss of integrity of the animals and/or their documentation. Here, we describe the various aspects of laboratory animal quality that should be confirmed when sharing rodent research models. We also discuss how repositories of biological materials support the scientific community to ensure the continuity of the quality of laboratory animals. Both the concept of quality and the role of repositories themselves extend to all exchanges of biological materials and all networks that support the sharing of these reagents.Peer reviewe
Moving from a Product-Based Economy to a Service-Based Economy for a More Sustainable Future
Traditionally, economic growth and prosperity have been linked with the availability, production and distribution of tangible goods as well as the ability of consumers to acquire such goods. Early evidence regarding this connection dates back to Adam Smith's Wealth of Nations (1776), in which any activity not resulting in the production of a tangible good is characterized as unproductive of any value." Since then, this coupling of economic value and material production has been prevalent in both developed and developing economies throughout the world. One unintended consequence of this coupling has been the exponential increase in the amount of solid waste being generated. The reason is that any production and consumption of material goods eventually generates the equivalent amount of (or even more) waste. Exacerbating this problem is the fact that, with today's manufacturing and supply chain management technologies, it has become cheaper to dispose and replace most products rather than to repair and reuse them. This has given rise to what some call a disposable society." To put things in perspective: In 2012 households in the U.K. generated approximately 22 thousand tons of waste, which amounted to 411 kg of waste generated per person (Department for Environment, Food & Rural Affairs, 2015). During the same time period, households in the U.S. generated 251 million tons of waste, which is equivalent to a person generating approximately 2 kg of waste every day (U.S. Environmental Protection Agency, 2012). Out of these 251 million tons of total waste generated, approximately 20% of the discarded items were categorized as durable goods. The disposal of durable goods is particularly worrisome because they are typically produced using material from non- renewable resources such as iron, minerals, and petroleum-based raw materials
A novel knockout mouse for the small EDRK-rich factor 2 (Serf2) showing developmental and other deficits
The small EDRK-rich factor 2 (SERF2) is a highly conserved protein that modifies amyloid fibre assembly in vitro and promotes protein misfolding. However, the role of SERF2 in regulating age-related proteotoxicity remains largely unexplored due to a lack of in vivo models. Here, we report the generation of Serf2 knockout mice using an ES cell targeting approach, with Serf2 knockout alleles being bred onto different defined genetic backgrounds. We highlight phenotyping data from heterozygous Serf2^{+/-} mice, including unexpected male-specific phenotypes in startle response and pre-pulse inhibition. We report embryonic lethality in Serf2^{-/-} null animals when bred onto a C57BL/6 N background. However, homozygous null animals were viable on a mixed genetic background and, remarkably, developed without obvious abnormalities. The Serf2 knockout mice provide a powerful tool to further investigate the role of SERF2 protein in previously unexplored pathophysiological pathways in the context of a whole organism
Deficiency of the zinc finger protein ZFP106 causes motor and sensory neurodegeneration
Acknowledgements We are indebted to Jim Humphries, JennyCorrigan, LizDarley, Elizabeth Joynson, Natalie Walters, Sara Wells and the whole necropsy, histology, genotyping and MLC ward 6 teams at MRC Harwell for excellent technical assistance. We thank the staff of the WTSI Illumina Bespoke Team for the RNA-seq data, the Sanger Mouse Genetics Project for the initial mouse characterization and Dr David Adams for critical reading of the manuscript. We also thank KOMP for the mouse embryonic stem cells carrying the knockout first promoter-less allele (tm1a(KOMP)Wtsi) within Zfp016. Conflict of Interest statement. None declared. Funding This work was funded by the UK Medical Research Council (MRC) to A.A.-A. and a Motor Neurone Disease Association (MNDA) project grant to A.A.-A. and EMCF. D.L.H.B. is a Wellcome Trust Senior Clinical Scientist Fellow and P.F. is a MRC/MNDA Lady Edith Wolfson Clinician Scientist Fellow. Funding to pay the Open Access publication charges for this article was provided by the MRC grant number: MC_UP_A390_1106.Peer reviewedPublisher PD
Neuroplastin genetically interacts with Cadherin 23 and the encoded isoform Np55 is sufficient for cochlear hair cell function and hearing
Mammalian hearing involves the mechanoelectrical transduction (MET) of sound-induced fluid waves in the cochlea. Essential to this process are the specialised sensory cochlear cells, the inner (IHCs) and outer hair cells (OHCs). While genetic hearing loss is highly heterogeneous, understanding the requirement of each gene will lead to a better understanding of the molecular basis of hearing and also to therapeutic opportunities for deafness. The Neuroplastin (Nptn) gene, which encodes two protein isoforms Np55 and Np65, is required for hearing, and homozygous loss-of-function mutations that affect both isoforms lead to profound deafness in mice. Here we have utilised several distinct mouse models to elaborate upon the spatial, temporal, and functional requirement of Nptn for hearing. While we demonstrate that both Np55 and Np65 are present in cochlear cells, characterisation of a Np65-specific mouse knockout shows normal hearing thresholds indicating that Np65 is functionally redundant for hearing. In contrast, we find that Nptn-knockout mice have significantly reduced maximal MET currents and MET channel open probabilities in mature OHCs, with both OHCs and IHCs also failing to develop fully mature basolateral currents. Furthermore, comparing the hearing thresholds and IHC synapse structure of Nptn-knockout mice with those of mice that lack Nptn only in IHCs and OHCs shows that the majority of the auditory deficit is explained by hair cell dysfunction, with abnormal afferent synapses contributing only a small proportion of the hearing loss. Finally, we show that continued expression of Neuroplastin in OHCs of adult mice is required for membrane localisation of Plasma Membrane Ca2+ ATPase 2 (PMCA2), which is essential for hearing function. Moreover, Nptn haploinsufficiency phenocopies Atp2b2 (encodes PMCA2) mutations, with heterozygous Nptn-knockout mice exhibiting hearing loss through genetic interaction with the Cdh23ahl allele. Together, our findings provide further insight to the functional requirement of Neuroplastin for mammalian hearing
- …