586 research outputs found

    Safety, tolerability, and impact on allergic inflammation of autologous E.coli autovaccine in the treatment of house dust mite asthma - a prospective open clinical trial

    Get PDF
    Background: Asthma is increasing worldwide and results from a complex immunological interaction between genetic susceptibility and environmental factors. Autovaccination with E. coli induces a strong TH-1 immune response, thus offering an option for the treatment of allergic diseases. Methods: Prospective open trial on safety, tolerability, and impact on allergic inflammation of an autologous E.coli autovaccine in intermittent or mild persistent house dust mite asthma. Determination of exhaled nitric monoxide (eNO) before and after bronchial mite challenge initially and after nine months of autovaccination. Results: Median eNO increase after autovaccination was significantly smaller (from 27.3 to 33.8 ppb; p=0.334) compared to initial values (from 32.6 to 42.2 ppb; p=0.046) (p=0.034). In nine subjects and a total of 306 injections, we observed 101 episodes of local erythema (33.3%; median of maximal diameter 2.5 cm), 95 episodes of local swelling (31.1%; median of maximal diameter 3 cm), and 27 episodes of local pain (8.8%). Four subjects reported itching at the injection site with a total of 30 episodes (9.8%). We observed no serious adverse events. All organ functions (inclusive electrocardiogramm) and laboratory testing of the blood (clinical chemistry, hematology) and the urine (screening test, B-microglobuline) were within normal limits. Vital signs undulated within the physiological variability. Conclusion: The administration of autologous autovacine for the treatment of house dust mite asthma resulted in a reduction of the eNO increase upon bronchial mite challenge. In nine subjects and 306 injections, only a few mild local reactions and no systemic severe adverse events were observed. EudraCT Nr. 2005-005534-12 ClinicalTrials.gov ID NCT0067720

    Annual post-market environmental monitoring (PMEM) report on the cultivation of genetically modified maize MON 810 in 2014 from Monsanto Europe S.A.

    Get PDF
    Following a request from the European Commission, the Panel on Genetically Modified Organisms of the European Food Safety Authority (GMO Panel) assessed the annual post-market environmental monitoring (PMEM) report for the 2014 growing season of maize MON 810 provided by Monsanto Europe S.A. The GMO Panel concludes that the insect resistance monitoring data do not indicate a decrease in susceptibility of field Iberian populations of corn borers to the Cry1Ab protein over the 2014 season. However, as the methodology for insect resistance monitoring remained unchanged compared to previous PMEM reports, the GMO Panel reiterates its previous recommendations for improvement of the insect resistance management plan. The GMO Panel considers that the farmer alert system to report complaints regarding product performance could complement the information obtained from the laboratory bioassays, but encourages the consent holder to provide more information in order to be in a position to appraise its usefulness. The data on general surveillance activities do not indicate any unanticipated adverse effects on human and animal health or the environment arising from the cultivation of maize MON 810 cultivation in 2014. The GMO Panel reiterates its previous recommendations to improve the methodology for the analysis of farmer questionnaires and conduct of the literature review in future annual PMEM reports on maize MON 810. The GMO Panel urges the consent holder to consider how to make best use of the information recorded in national registers to optimise sampling for farmer questionnaires, and requests to continue reviewing and discussing relevant scientific publications on possible adverse effects of maize MON 810 on rove beetles. Also, the GMO Panel encourages relevant parties to continue developing a methodological framework to use existing networks in the broader context of environmental monitorin

    Cultural differences in postnatal quality of life among German-speaking women - a prospective survey in two countries.

    Get PDF
    Assessment of quality of life after childbirth is an important health-outcome measurement for new mothers and is of special interest in midwifery. The Mother-Generated Index (MGI) is a validated instrument to assess postnatal quality of life. The tool has not been applied for making a cross-cultural comparison before. This study investigated (a) responses to the MGI in German-speaking women in Germany and Switzerland; and (b) associations between MGI scores on the one hand and maternity and midwifery care on the other

    Scientific Opinion on a request from the European Commission for the assessment of the new scientific elements supporting the prolongation of prohibition of the placing on the market of maize MON 863 for food and feed purposes in Austria

    Full text link
    Austria notified the European Commission of its new scientific elements justifying the prolongation for three additional years of the implementation of a national safeguard measure prohibiting the placing on the market of genetically modified maize MON 863 in Austria. Subsequently, the European Commission asked the European Food Safety Authority (EFSA) to assess the new scientific information supporting the prolongation of the prohibition. Having considered the information provided by Austria and all relevant scientific publications, the EFSA Panel on Genetically Modified Organisms (GMO Panel) concluded that the new scientific elements submitted by the Austrian Authorities do not lead EFSA to reconsider the conclusions in its opinions on maize MON 863

    Scientific Opinion on a request from the European Commission related to the prolongation of prohibition of the placing on the market of genetically modified oilseed rape event GT73 for import, processing and feed uses in Austria

    Full text link
    Following a request from the European Commission, the Panel on Genetically Modified Organisms of the European Food Safety Authority (EFSA GMO Panel) evaluated the documentation provided by Austria to support the prolongation of the safeguard clause measure prohibiting the placing on the market of the genetically modified oilseed rape event GT73 for import, processing and feed uses in Austria. The EFSA GMO Panel assessed whether the submitted documentation comprised new scientific information that would change or invalidate the conclusions of its previous risk assessments on oilseed rape GT73. The EFSA GMO Panel also considered the relevance of the concerns raised by Austria in the light of the most recent data published in the scientific literature. The authorised uses of oilseed rape GT73 exclude cultivation, but data on gene flow, persistence and invasiveness derived from cultivation were considered as a worst case, representing conditions where exposure and potential impact are expected to be the highest, to assess possible environmental impacts resulting from seed import spills. In the documentation provided by Austria and in the scientific literature, the EFSA GMO Panel could not identify new scientific evidence that indicates that the import, processing and feed uses of oilseed rape GT73 in the EU pose a significant and imminent risk to the environment. The EFSA GMO Panel does not consider the occurrence of occasional feral oilseed rape GT73 plants, pollen dispersal and consequent cross-pollination as environmental harm in itself. In conclusion, the EFSA GMO Panel considers that, based on the documentation supplied by Austria and a review of recent scientific literature, there is no specific scientific evidence in terms of risk to the environment that would support the notification of a safeguard clause measure under Article 23 of Directive 2001/18/EC nor its prolongation, and that would invalidate its previous risk assessments of oilseed rape GT73

    WHO/IUIS Allergen Nomenclature: Providing a common language

    Get PDF
    A systematic nomenclature for allergens originated in the early 1980s, when few protein allergens had been described. A group of scientists led by Dr. David G. Marsh developed a nomenclature based on the Linnaean taxonomy, and further established the World Health Organization/International Union of Immunological Societies (WHO/IUIS) Allergen Nomenclature Sub-Committee in 1986. Its stated aim was to standardize the names given to the antigens (allergens) that caused IgE-mediated allergies in humans. The Sub-Committee first published a revised list of allergen names in 1986, which continued to grow with rare publications until 1994. Between 1994 and 2007 the database was a text table online, then converted to a more readily updated website. The allergen list became the Allergen Nomenclature database (www.allergen.org), which currently includes approximately 880 proteins from a wide variety of sources. The Sub-Committee includes experts on clinical and molecular allergology. They review submissions of allergen candidates, using evidence-based criteria developed by the Sub-Committee. The review process assesses the biochemical analysis and the proof of allergenicity submitted, and aims to assign allergen names prior to publication. The Sub-Committee maintains and revises the database, and addresses continuous challenges as new “omics” technologies provide increasing data about potential new allergens. Most journals publishing information on new allergens require an official allergen name, which involves submission of confidential data to the WHO/IUIS Allergen Nomenclature Sub-Committee, sufficient to demonstrate binding of IgE from allergic subjects to the purified protein

    Assessment of genetically modified maize\ua04114 for food and feed uses, under Regulation (EC) No\ua01829/2003 (application EFSA-GMO-NL-2014-123)

    Get PDF
    Maize\ua04114 was developed through Agrobacterium\ua0tumefaciens-mediated transformation to provide protection against certain lepidopteran and coleopteran pests by expression of the Cry1F, Cry34Ab1 and Cry35Ab1 proteins derived from Bacillus\ua0thuringiensis, and tolerance to the herbicidal active ingredient glufosinate-ammonium by expression of the PAT protein derived from Streptomyces viridochromogenes. The molecular characterisation data did not identify issues requiring assessment for food/feed safety. None of the compositional, agronomic and phenotypic differences identified between maize\ua04114 and the non-genetically modified (GM) comparator(s) required further assessment. There were no concerns regarding the potential toxicity and allergenicity of the newly expressed proteins Cry1F, Cry34Ab1, Cry35Ab1 and PAT, and no evidence that the genetic modification might significantly change the overall allergenicity of maize 4114. The nutritional value of food/feed derived from maize 4114 is not expected to differ from that derived from non-GM maize varieties and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize\ua04114 grains into the environment, maize\ua04114 would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize\ua04114. The genetically modified organism (GMO) Panel\ua0concludes that maize\ua04114 is as safe as the non-GM comparator(s) and non-GM reference varieties with respect to potential effects on human and animal health and the environment in the context of the scope of this application
    corecore