196 research outputs found

    Upper limits on neutrino masses from the 2dFGRS and WMAP: the role of priors

    Full text link
    Solar, atmospheric, and reactor neutrino experiments have confirmed neutrino oscillations, implying that neutrinos have non-zero mass, but without pinning down their absolute masses. While it is established that the effect of neutrinos on the evolution of cosmic structure is small, the upper limits derived from large-scale structure data could help significantly to constrain the absolute scale of the neutrino masses. In a recent paper the 2dF Galaxy Redshift Survey (2dFGRS) team provided an upper limit m_nu,tot < 2.2 eV, i.e. approximately 0.7 eV for each of the three neutrino flavours, or phrased in terms of their contributioin to the matter density, Omega_nu/Omega_m < 0.16. Here we discuss this analysis in greater detail, considering issues of assumed 'priors' like the matter density Omega_m and the bias of the galaxy distribution with respect the dark matter distribution. As the suppression of the power spectrum depends on the ratio Omega_nu/Omega_m, we find that the out-of- fashion Mixed Dark Matter Model, with Omega_nu=0.2, Omega_m=1 and no cosmological constant, fits the 2dFGRS power spectrum and the CMB data reasonably well, but only for a Hubble constant H_0<50 km/s/Mpc. As a consequence, excluding low values of the Hubble constant, e.g. with the HST Key Project is important in order to get a strong constraint on the neutrino masses. We also comment on the improved limit by the WMAP team, and point out that the main neutrino signature comes from the 2dFGRS and the Lyman alpha forest.Comment: 24 pages, 12 figures Minor changes to matched version published in JCA

    Einstein Probe - a small mission to monitor and explore the dynamic X-ray Universe

    Full text link
    Einstein Probe is a small mission dedicated to time-domain high-energy astrophysics. Its primary goals are to discover high-energy transients and to monitor variable objects in the 0.54 0.5-4~keV X-rays, at higher sensitivity by one order of magnitude than those of the ones currently in orbit. Its wide-field imaging capability, featuring a large instantaneous field-of-view (60×6060^\circ \times60^\circ, 1.1\sim1.1sr), is achieved by using established technology of micro-pore (MPO) lobster-eye optics, thereby offering unprecedentedly high sensitivity and large Grasp. To complement this powerful monitoring ability, it also carries a narrow-field, sensitive follow-up X-ray telescope based on the same MPO technology to perform follow-up observations of newly-discovered transients. Public transient alerts will be downlinked rapidly, so as to trigger multi-wavelength follow-up observations from the world-wide community. Over three of its 97-minute orbits almost the entire night sky will be sampled, with cadences ranging from 5 to 25 times per day. The scientific objectives of the mission are: to discover otherwise quiescent black holes over all astrophysical mass scales by detecting their rare X-ray transient flares, particularly tidal disruption of stars by massive black holes at galactic centers; to detect and precisely locate the electromagnetic sources of gravitational-wave transients; to carry out systematic surveys of X-ray transients and characterize the variability of X-ray sources. Einstein Probe has been selected as a candidate mission of priority (no further selection needed) in the Space Science Programme of the Chinese Academy of Sciences, aiming for launch around 2020.Comment: accepted to publish in PoS, Proceedings of "Swift: 10 Years of Discovery" (Proceedings of Science; ed. by P. Caraveo, P. D'Avanzo, N. Gehrels and G. Tagliaferri). Minor changes in text, references update

    Characterization of small planets with Kepler and HARPS-N

    Get PDF
    A. S. Bonomo, L. Malavolta, and X. Dumusque acknowledge fundings from the European Union Seventh Framework Programme (FP7/2007-2013) under agreement No. 313014 “Measuring ETAEARTH: characterization of terrestrial planetary systems with Kepler, HARPS-N, and Gaia” [PI: Dr. Alessandro Sozzetti].The high-accuracy and high-precision HARPS-N spectrograph has been installed at the italian Telescopio Nazionale Galileo in La Palma approximately two years and a half ago. Eighty nights per year of Guaranteed Time of Observation are mostly dedicated to the radial-velocity (RV) follow up of Kepler small-size planetary candidates to establish their nature and to determine accurately their masses. We report on recent results of this ongoing RV campaign, including the recent characterization of the planetary system Kepler-101.Publisher PD

    Understanding the core density profile in TCV H-mode plasmas

    Full text link
    Results from a database analysis of H-mode electron density profiles on the Tokamak \`a Configuration Variable (TCV) in stationary conditions show that the logarithmic electron density gradient increases with collisionality. By contrast, usual observations of H-modes showed that the electron density profiles tend to flatten with increasing collisionality. In this work it is reinforced that the role of collisionality alone, depending on the parameter regime, can be rather weak and in these, dominantly electron heated TCV cases, the electron density gradient is tailored by the underlying turbulence regime, which is mostly determined by the ratio of the electron to ion temperature and that of their gradients. Additionally, mostly in ohmic plasmas, the Ware-pinch can significantly contribute to the density peaking. Qualitative agreement between the predicted density peaking by quasi-linear gyrokinetic simulations and the experimental results is found. Quantitative comparison would necessitate ion temperature measurements, which are lacking in the considered experimental dataset. However, the simulation results show that it is the combination of several effects that influences the density peaking in TCV H-mode plasmas.Comment: 23 pages, 12 figure

    Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII)

    Get PDF
    Phytoplasmas, the causal agents of numerous plant diseases, are insect-vector-transmitted, cell-wall-less bacteria descended from ancestral low-G+C-content Gram-positive bacteria in the Bacillus–Clostridium group. Despite their monophyletic origin, widely divergent phytoplasma lineages have evolved in adaptation to specific ecological niches. Classification and taxonomic assignment of phytoplasmas have been based primarily on molecular analysis of 16S rRNA gene sequences because of the inaccessibility of measurable phenotypic characters suitable for conventional microbial characterization. In the present study, an interactive online tool, iPhyClassifier, was developed to expand the efficacy and capacity of the current 16S rRNA gene sequence-based phytoplasma classification system. iPhyClassifier performs sequence similarity analysis, simulates laboratory restriction enzyme digestions and subsequent gel electrophoresis and generates virtual restriction fragment length polymorphism (RFLP) profiles. Based on calculated RFLP pattern similarity coefficients and overall sequence similarity scores, iPhyClassifier makes instant suggestions on tentative phytoplasma 16Sr group/subgroup classification status and ‘Candidatus Phytoplasma’ species assignment. Using iPhyClassifier, we revised and updated the classification of strains affiliated with the peach X-disease phytoplasma group. The online tool can be accessed at http://www.ba.ars.usda.gov/data/mppl/iPhyClassifier.html

    Orbital effects of a monochromatic plane gravitational wave with ultra-low frequency incident on a gravitationally bound two-body system

    Full text link
    We analytically compute the long-term orbital variations of a test particle orbiting a central body acted upon by an incident monochromatic plane gravitational wave. We assume that the characteristic size of the perturbed two-body system is much smaller than the wavelength of the wave. Moreover, we also suppose that the wave's frequency is much smaller than the particle's orbital one. We make neither a priori assumptions about the direction of the wavevector nor on the orbital geometry of the planet. We find that, while the semi-major axis is left unaffected, the eccentricity, the inclination, the longitude of the ascending node, the longitude of pericenter and the mean anomaly undergo non-vanishing long-term changes. They are not secular trends because of the slow modulation introduced by the tidal matrix coefficients and by the orbital elements themselves. They could be useful to indepenedently constrain the ultra-low frequency waves which may have been indirectly detected in the BICEP2 experiment. Our calculation holds, in general, for any gravitationally bound two-body system whose characteristic frequency is much larger than the frequency of the external wave. It is also valid for a generic perturbation of tidal type with constant coefficients over timescales of the order of the orbital period of the perturbed particle.Comment: LaTex2e, 24 pages, no figures, no tables. Changes suggested by the referees include
    corecore