274 research outputs found

    Upper limits on neutrino masses from the 2dFGRS and WMAP: the role of priors

    Full text link
    Solar, atmospheric, and reactor neutrino experiments have confirmed neutrino oscillations, implying that neutrinos have non-zero mass, but without pinning down their absolute masses. While it is established that the effect of neutrinos on the evolution of cosmic structure is small, the upper limits derived from large-scale structure data could help significantly to constrain the absolute scale of the neutrino masses. In a recent paper the 2dF Galaxy Redshift Survey (2dFGRS) team provided an upper limit m_nu,tot < 2.2 eV, i.e. approximately 0.7 eV for each of the three neutrino flavours, or phrased in terms of their contributioin to the matter density, Omega_nu/Omega_m < 0.16. Here we discuss this analysis in greater detail, considering issues of assumed 'priors' like the matter density Omega_m and the bias of the galaxy distribution with respect the dark matter distribution. As the suppression of the power spectrum depends on the ratio Omega_nu/Omega_m, we find that the out-of- fashion Mixed Dark Matter Model, with Omega_nu=0.2, Omega_m=1 and no cosmological constant, fits the 2dFGRS power spectrum and the CMB data reasonably well, but only for a Hubble constant H_0<50 km/s/Mpc. As a consequence, excluding low values of the Hubble constant, e.g. with the HST Key Project is important in order to get a strong constraint on the neutrino masses. We also comment on the improved limit by the WMAP team, and point out that the main neutrino signature comes from the 2dFGRS and the Lyman alpha forest.Comment: 24 pages, 12 figures Minor changes to matched version published in JCA

    Gyrokinetic analysis and simulation of pedestals, to identify the culprits for energy losses using fingerprints

    Full text link
    Fusion performance in tokamaks hinges critically on the efficacy of the Edge Transport Barrier (ETB) at suppressing energy losses. The new concept of fingerprints is introduced to identify the instabilities that cause the transport losses in the ETB of many of today's experiments, from widely posited candidates. Analysis of the Gyrokinetic-Maxwell equations, and gyrokinetic simulations of experiments, find that each mode type produces characteristic ratios of transport in the various channels: density, heat and impurities. This, together with experimental observations of transport in some channel, or, of the relative size of the driving sources of channels, can identify or determine the dominant modes causing energy transport. In multiple ELMy H-mode cases that are examined, these fingerprints indicate that MHD-like modes are apparently not the dominant agent of energy transport; rather, this role is played by Micro-Tearing Modes (MTM) and Electron Temperature Gradient (ETG) modes, and in addition, possibly Ion Temperature Gradient (ITG)/Trapped Electron Modes (ITG/TEM) on JET. MHD-like modes may dominate the electron particle losses. Fluctuation frequency can also be an important means of identification, and is often closely related to the transport fingerprint. The analytical arguments unify and explain previously disparate experimental observations on multiple devices, including DIII-D, JET and ASDEX-U, and detailed simulations of two DIII-D ETBs also demonstrate and corroborate this

    Einstein Probe - a small mission to monitor and explore the dynamic X-ray Universe

    Full text link
    Einstein Probe is a small mission dedicated to time-domain high-energy astrophysics. Its primary goals are to discover high-energy transients and to monitor variable objects in the 0.54 0.5-4~keV X-rays, at higher sensitivity by one order of magnitude than those of the ones currently in orbit. Its wide-field imaging capability, featuring a large instantaneous field-of-view (60×6060^\circ \times60^\circ, 1.1\sim1.1sr), is achieved by using established technology of micro-pore (MPO) lobster-eye optics, thereby offering unprecedentedly high sensitivity and large Grasp. To complement this powerful monitoring ability, it also carries a narrow-field, sensitive follow-up X-ray telescope based on the same MPO technology to perform follow-up observations of newly-discovered transients. Public transient alerts will be downlinked rapidly, so as to trigger multi-wavelength follow-up observations from the world-wide community. Over three of its 97-minute orbits almost the entire night sky will be sampled, with cadences ranging from 5 to 25 times per day. The scientific objectives of the mission are: to discover otherwise quiescent black holes over all astrophysical mass scales by detecting their rare X-ray transient flares, particularly tidal disruption of stars by massive black holes at galactic centers; to detect and precisely locate the electromagnetic sources of gravitational-wave transients; to carry out systematic surveys of X-ray transients and characterize the variability of X-ray sources. Einstein Probe has been selected as a candidate mission of priority (no further selection needed) in the Space Science Programme of the Chinese Academy of Sciences, aiming for launch around 2020.Comment: accepted to publish in PoS, Proceedings of "Swift: 10 Years of Discovery" (Proceedings of Science; ed. by P. Caraveo, P. D'Avanzo, N. Gehrels and G. Tagliaferri). Minor changes in text, references update

    Generating Bijections between HOAS and the Natural Numbers

    Full text link
    A provably correct bijection between higher-order abstract syntax (HOAS) and the natural numbers enables one to define a "not equals" relationship between terms and also to have an adequate encoding of sets of terms, and maps from one term family to another. Sets and maps are useful in many situations and are preferably provided in a library of some sort. I have released a map and set library for use with Twelf which can be used with any type for which a bijection to the natural numbers exists. Since creating such bijections is tedious and error-prone, I have created a "bijection generator" that generates such bijections automatically together with proofs of correctness, all in the context of Twelf.Comment: In Proceedings LFMTP 2010, arXiv:1009.218

    World-leading science with SPIRou - the nIR spectropolarimeter / high-precision velocimeter for CFHT

    Full text link
    SPIRou is a near-infrared (nIR) spectropolarimeter / velocimeter proposed as a new-generation instrument for CFHT. SPIRou aims in particular at becoming world-leader on two forefront science topics, (i) the quest for habitable Earth-like planets around very- low-mass stars, and (ii) the study of low-mass star and planet formation in the presence of magnetic fields. In addition to these two main goals, SPIRou will be able to tackle many key programs, from weather patterns on brown dwarf to solar-system planet atmospheres, to dynamo processes in fully-convective bodies and planet habitability. The science programs that SPIRou proposes to tackle are forefront (identified as first priorities by most research agencies worldwide), ambitious (competitive and complementary with science programs carried out on much larger facilities, such as ALMA and JWST) and timely (ideally phased with complementary space missions like TESS and CHEOPS). SPIRou is designed to carry out its science mission with maximum efficiency and optimum precision. More specifically, SPIRou will be able to cover a very wide single-shot nIR spectral domain (0.98-2.35 \mu m) at a resolving power of 73.5K, providing unpolarized and polarized spectra of low-mass stars with a ~15% average throughput and a radial velocity (RV) precision of 1 m/s.Comment: 12 pages, 5 figures, conference proceedings of the French Society of Astronomy and Astrophysics meeting 201

    Characterization of small planets with Kepler and HARPS-N

    Get PDF
    A. S. Bonomo, L. Malavolta, and X. Dumusque acknowledge fundings from the European Union Seventh Framework Programme (FP7/2007-2013) under agreement No. 313014 “Measuring ETAEARTH: characterization of terrestrial planetary systems with Kepler, HARPS-N, and Gaia” [PI: Dr. Alessandro Sozzetti].The high-accuracy and high-precision HARPS-N spectrograph has been installed at the italian Telescopio Nazionale Galileo in La Palma approximately two years and a half ago. Eighty nights per year of Guaranteed Time of Observation are mostly dedicated to the radial-velocity (RV) follow up of Kepler small-size planetary candidates to establish their nature and to determine accurately their masses. We report on recent results of this ongoing RV campaign, including the recent characterization of the planetary system Kepler-101.Publisher PD

    The Chandrayaan-1 X-ray spectrometer

    Get PDF
    The Chandrayaan-1 X-ray Spectrometer (C1XS) is a compact X-ray spectrometer for the Chandrayaan-1 lunar mission. It exploits heritage from the D-C1XS instrument on ESA’s SMART-1 mission. C1XS is designed to measure absolute and relative abundances of major rock-forming elements (principally Mg, Al, Si, Ti, Ca and Fe) over the lunar surface. The baseline design consists of 24 nadir pointing Swept Charge Device detectors, which provide high detection efficiency in the 1–7 keV range, which contains the X-ray fluorescence lines of the above elements of interest. Micromachined collimators provide a 14 degree FWHM FOV, equivalent to 25 km from 100 km altitude. A deployable door protects the instrument during launch and cruise, and also provides a 55Fe calibration X-ray source for detector calibration. Additional refinements compared to D-C1XS will result in a significantly improved energy resolution. To record the incident solar X-ray flux at the Moon, C1XS carries an X-ray Solar Monitor (XSM). C1XS will arrive at the Moon in the run up to the maximum of the solar cycle 24, and the expected high incident X-ray flux coupled to a 100 km circular polar orbit, will provide composition data accurate to better than 10% of major elemental abundances over the lunar surface

    On the interaction between the island divertor heat fluxes, the scrape-off layer radial electric field and the edge turbulence in Wendelstein 7-X plasmas

    Get PDF
    The formation of the radial electric field, E-r in the scrape-off layer (SOL) has been experimentally studied for attached divertor conditions in stellarator W7-X. The main objective of this study is to test the validity in a complex three-dimensional (3D) island divertor of simple models, typically developed in tokamaks, relating E-r in the SOL to the sheath potential drop gradient at the target. Additionally, we investigate the effect of the edge E-r shear on the reduction of density fluctuation amplitude, a well-established phenomenon according to the existing bibliography. The main diagnostic for measurements in the SOL is a V-band Doppler reflectometer that can provide the measurement of the E-r and density fluctuations with good spatial resolution. 3D measurements of divertor parameters have been carried out using infrared cameras, with the exponential decay length of the divertor heat flux (lambda(q)) resulting in a suitable proxy for the model-relevant lambda(T), the exponential decay length of the temperature at the divertor. In the investigated attached regimes, it is shown for the first time that the formation of the E-r in the SOL depends on parameters at the divertor, following a E-r proportional to T-e/lambda(q) qualitatively similar to that found in a tokamak. Then, from the analyzed plasmas, the observed E-r shear at the edge is linked to a moderate local reduction of the amplitude of density fluctuations

    Understanding the core density profile in TCV H-mode plasmas

    Full text link
    Results from a database analysis of H-mode electron density profiles on the Tokamak \`a Configuration Variable (TCV) in stationary conditions show that the logarithmic electron density gradient increases with collisionality. By contrast, usual observations of H-modes showed that the electron density profiles tend to flatten with increasing collisionality. In this work it is reinforced that the role of collisionality alone, depending on the parameter regime, can be rather weak and in these, dominantly electron heated TCV cases, the electron density gradient is tailored by the underlying turbulence regime, which is mostly determined by the ratio of the electron to ion temperature and that of their gradients. Additionally, mostly in ohmic plasmas, the Ware-pinch can significantly contribute to the density peaking. Qualitative agreement between the predicted density peaking by quasi-linear gyrokinetic simulations and the experimental results is found. Quantitative comparison would necessitate ion temperature measurements, which are lacking in the considered experimental dataset. However, the simulation results show that it is the combination of several effects that influences the density peaking in TCV H-mode plasmas.Comment: 23 pages, 12 figure
    corecore