6,153 research outputs found

    Uncertainties in atmospheric chemistry modelling due to convection parameterisations and subsequent scavenging

    Get PDF
    Moist convection in global modelling contributes significantly to the transport of energy, momentum, water and trace gases and aerosols within the troposphere. Since convective clouds are on a scale too small to be resolved in a global model their effects have to be parameterised. However, the whole process of moist convection and especially its parameterisations are associated with uncertainties. In contrast to previous studies on the impact of convection on trace gases, which had commonly neglected the convective transport for some or all compounds, we investigate this issue by examining simulations with five different convection schemes. This permits an uncertainty analysis due to the process formulation, without the inconsistencies inherent in entirely neglecting deep convection or convective tracer transport for one or more tracers. <br><br> Both the simulated mass fluxes and tracer distributions are analysed. Investigating the distributions of compounds with different characteristics, e.g., lifetime, chemical reactivity, solubility and source distributions, some differences can be attributed directly to the transport of these compounds, whereas others are more related to indirect effects, such as the transport of precursors, chemical reactivity in certain regions, and sink processes. <br><br> The model simulation data are compared with the average regional profiles of several measurement campaigns, and in detail with two campaigns in fall and winter 2005 in Suriname and Australia, respectively. <br><br> The shorter-lived a compound is, the larger the differences and consequently the uncertainty due to the convection parameterisation are, as long as it is not completely controlled by local production that is independent of convection and its impacts (e.g. water vapour changes). Whereas for long-lived compounds like CO or O<sub>3</sub> the mean differences between the simulations are less than 25%), differences for short-lived compounds reach up to ±100% with different convection schemes. <br><br> A rating of an overall "best" performing scheme is difficult, since the optimal performance depends on the region and compound

    Upper limits on neutrino masses from the 2dFGRS and WMAP: the role of priors

    Full text link
    Solar, atmospheric, and reactor neutrino experiments have confirmed neutrino oscillations, implying that neutrinos have non-zero mass, but without pinning down their absolute masses. While it is established that the effect of neutrinos on the evolution of cosmic structure is small, the upper limits derived from large-scale structure data could help significantly to constrain the absolute scale of the neutrino masses. In a recent paper the 2dF Galaxy Redshift Survey (2dFGRS) team provided an upper limit m_nu,tot < 2.2 eV, i.e. approximately 0.7 eV for each of the three neutrino flavours, or phrased in terms of their contributioin to the matter density, Omega_nu/Omega_m < 0.16. Here we discuss this analysis in greater detail, considering issues of assumed 'priors' like the matter density Omega_m and the bias of the galaxy distribution with respect the dark matter distribution. As the suppression of the power spectrum depends on the ratio Omega_nu/Omega_m, we find that the out-of- fashion Mixed Dark Matter Model, with Omega_nu=0.2, Omega_m=1 and no cosmological constant, fits the 2dFGRS power spectrum and the CMB data reasonably well, but only for a Hubble constant H_0<50 km/s/Mpc. As a consequence, excluding low values of the Hubble constant, e.g. with the HST Key Project is important in order to get a strong constraint on the neutrino masses. We also comment on the improved limit by the WMAP team, and point out that the main neutrino signature comes from the 2dFGRS and the Lyman alpha forest.Comment: 24 pages, 12 figures Minor changes to matched version published in JCA

    Numerical simulation of time delay interferometry for eLISA/NGO

    Full text link
    eLISA/NGO is a new gravitational wave detection proposal with arm length of 10^6 km and one interferometer down-scaled from LISA. Just like LISA and ASTROD-GW, in order to attain the requisite sensitivity for eLISA/NGO, laser frequency noise must be suppressed to below the secondary noises such as the optical path noise, acceleration noise etc. In previous papers, we have performed the numerical simulation of the time delay interferometry (TDI) for LISA and ASTROD-GW with one arm dysfunctional by using the CGC 2.7 ephemeris. The results are well below their respective limits which the laser frequency noise is required to be suppressed. In this paper, we follow the same procedure to simulate the time delay interferometry numerically. To do this, we work out a set of 1000-day optimized mission orbits of the eLISA/NGO spacecraft starting at January 1st, 2021 using the CGC 2.7 ephemeris framework. We then use the numerical method to calculate the residual optical path differences in the second-generation TDI solutions as in our previous papers. The maximum path length difference, for all configurations calculated, is below 13 mm (43 ps). It is well below the limit which the laser frequency noise is required to be suppressed for eLISA/NGO. We compare and discuss the resulting differences due to the different arm lengths for various mission proposals -- eLISA/NGO, an NGO-LISA-type mission with a nominal arm length of 2 x 10^6 km, LISA and ASTROD-GW.Comment: 17 pages, 13 figures, 3 tables, minor changes in description to match the accepted version of Classical and Quantum Gravity. arXiv admin note: text overlap with arXiv:1102.496

    Validation of gyrokinetic modelling of light impurity transport including rotation in ASDEX Upgrade

    Get PDF
    Upgraded spectroscopic hardware and an improved impurity concentration calculation allow accurate determination of boron density in the ASDEX Upgrade tokamak. A database of boron measurements is compared to quasilinear and nonlinear gyrokinetic simulations including Coriolis and centrifugal rotational effects over a range of H-mode plasma regimes. The peaking of the measured boron profiles shows a strong anti-correlation with the plasma rotation gradient, via a relationship explained and reproduced by the theory. It is demonstrated that the rotodiffusive impurity flux driven by the rotation gradient is required for the modelling to reproduce the hollow boron profiles at higher rotation gradients. The nonlinear simulations validate the quasilinear approach, and, with the addition of perpendicular flow shear, demonstrate that each symmetry breaking mechanism that causes momentum transport also couples to rotodiffusion. At lower rotation gradients, the parallel compressive convection is required to match the most peaked boron profiles. The sensitivities of both datasets to possible errors is investigated, and quantitative agreement is found within the estimated uncertainties. The approach used can be considered a template for mitigating uncertainty in quantitative comparisons between simulation and experiment.Comment: 19 pages, 11 figures, accepted in Nuclear Fusio

    Performance assessment of a tightly baffled, long-legged divertor configuration in TCV with SOLPS-ITER

    Full text link
    Numerical simulations explore the possibility to test the tightly baffled, long-legged divertor (TBLLD) concept in a future upgrade of the Tokamak \`a configuration variable (TCV). The SOLPS-ITER code package is used to compare the exhaust performance of several TBLLD configurations with existing unbaffled and baffled TCV configurations. The TBLLDs feature a range of radial gaps between the separatrix and the outer leg side walls. All considered TBLLDs are predicted to lead to a denser and colder plasma in front of the targets and improve the power handling by factors of 2-3 compared to the present, baffled divertor and by up to a factor of 12 compared to the original, unbaffled configuration. The improved TBLLD performance is mainly due to a better neutral confinement with improved plasma-neutral interactions in the divertor region. Both power handling capability and neutral confinement increases when reducing the radial gap. The core compatibility of TBLLDs with nitrogen seeding is also evaluated and the detachment window with acceptable core pollution for the proposed TBLLDs is explored, showing a reduction of required upstream impurity concentration up to 18% to achieve the detachment with thinner radial gap

    R&D on co-working transport schemes in Geant4

    Full text link
    A research and development (R&D) project related to the extension of the Geant4 toolkit has been recently launched to address fundamental methods in radiation transport simulation. The project focuses on simulation at different scales in the same experimental environment; this problem requires new methods across the current boundaries of condensed-random-walk and discrete transport schemes. The new developments have been motivated by experimental requirements in various domains, including nanodosimetry, astronomy and detector developments for high energy physics applications.Comment: To be published in the Proceedings of the CHEP (Computing in High Energy Physics) 2009 conferenc

    Evidence of strong stabilizing effects on the evolution of boreoeutherian (Mammalia) dental proportions.

    Get PDF
    The dentition is an extremely important organ in mammals with variation in timing and sequence of eruption, crown morphology, and tooth size enabling a range of behavioral, dietary, and functional adaptations across the class. Within this suite of variable mammalian dental phenotypes, relative sizes of teeth reflect variation in the underlying genetic and developmental mechanisms. Two ratios of postcanine tooth lengths capture the relative size of premolars to molars (premolar-molar module, PMM), and among the three molars (molar module component, MMC), and are known to be heritable, independent of body size, and to vary significantly across primates. Here, we explore how these dental traits vary across mammals more broadly, focusing on terrestrial taxa in the clade of Boreoeutheria (Euarchontoglires and Laurasiatheria). We measured the postcanine teeth of N = 1,523 boreoeutherian mammals spanning six orders, 14 families, 36 genera, and 49 species to test hypotheses about associations between dental proportions and phylogenetic relatedness, diet, and life history in mammals. Boreoeutherian postcanine dental proportions sampled in this study carry conserved phylogenetic signal and are not associated with variation in diet. The incorporation of paleontological data provides further evidence that dental proportions may be slower to change than is dietary specialization. These results have implications for our understanding of dental variation and dietary adaptation in mammals

    Ammonia and other parent molecules in comet 10P/Tempel 2 from Herschel/HIFI and ground-based radio observations

    Full text link
    The Jupiter-family comet 10P/Tempel 2 was observed during its 2010 return with the Herschel Space Observatory. We present here the observation of the (J, K) = (1, 0)-(0, 0) transition of ammonia at 572 GHz in this comet with the Heterodyne Instrument for the Far Infrared (HIFI) of Herschel. We also report on radio observations of other molecules (HCN, CH3OH, H2S and CS) obtained during the 1999 return of the comet with the CSO telescope and the JCMT, and during its 2010 return with the IRAM 30-m telescope. Molecular abundances relative to water are 0.09%, 1.8%, 0.4%, and 0.08% for HCN, CH3OH, H2S, and CS, respectively. An abundance of 0.5% for NH3 is obtained, which is similar to the values measured in other comets. The hyperfine structure of the ammonia line is resolved for the first time in an astronomical source. Strong anisotropy in the outgassing is present in all observations from 1999 to 2010 and is modelled to derive the production rates.Comment: 6 pages and 8 figures. Accepted for publication in Astronomy & Astrophysic

    Late-Time X-ray Flares during GRB Afterglows: Extended Internal Engine Activity

    Full text link
    Observations of gamma ray bursts (GRBs) with Swift produced the initially surprising result that many bursts have large X-ray flares superimposed on the underlying afterglow. These flares were sometimes intense, rapid, and late relative to the nominal prompt phase. The most intense of these flares was observed by XRT with a flux >500 the afterglow. This burst then surprised observers by flaring again after >10000 s. The intense flare can be most easily understood within the context of the standard fireball model, if the internal engine that powers the prompt GRB emission is still active at late times. Recent observations indicate that X-ray flares are detected in ~1/3 of XRT detected afterglows. By studying the properties of the varieties of flares (such as rise/fall time, onset time, spectral variability, etc.) and relating them to overall burst properties, models of flare production and the GRB internal engine can be constrained.Comment: To appear in the proceedings of the 16th Annual October Astrophysics Conference in Maryland "Gamma Ray Bursts in the Swift Era
    corecore