31 research outputs found

    Modulation of biliary cancer chemo-resistance through microRNA-mediated rewiring of the expansion of CD133+ cells

    Get PDF
    Changes in single microRNA (MIR) expression have been associated with chemo-resistance in Biliary Tract Cancer (BTC). However, a global assessment of the dynamic role of the microRNome has never been performed to identify potential therapeutic targets that are functionally relevant in the BTC cell response to chemotherapy. APPROACH AND RESULTS: high-throughput-screening of 997 LNA-MIR-inhibitors was performed in 6 CCA cell lines treated with Cisplatin-Gemcitabine (CG) seeking changes in cell viability. Validation experiments were performed with miRvana probes. MIR and gene expression was assessed by TaqMan-assay, RNA-sequencing and in-situ-hybridization in 4 indepedent cohorts of human BTC. Knock-out of microRNA was achieved by CRISPR-CAS9 in CCLP cells (MIR1249KO) and tested for effects on chemotherapy sensitivity in-vitro and in-vivo. High-throughput-screening revealed that MIR1249-inhibition enhanced chemotherapy sensitivity across all cell lines. MIR1249 expression was increased in 41% of cases in human BTC. In validation experiments, MIR1249-inhibition did not alter cell viability in untreated or DMSO-treated cells; however it did increase CG effect. MIR1249 expression was increased in CD133+ biliary cancer cells freshly isolated from the stem niche of human BTC, as well as in CD133+ chemo-resistant CCLP cells. MIR1249 modulated the chemotherapy-induced enrichment of CD133+ cells by controlling their clonal expansion via the Wnt-regulator FZD8. MIR1249KO cells had impaired expansion of the CD133+ subclone and its enrichment after chemotherapy, reduced expression of Cancer-Stem-Cell markers, and increased chemosensitivity. MIR1249KO xenograft BTC models showed tumour shrinkage after exposure to weekly CG, while WT models showed only stable disease over treatment

    Mechanism-Based Screen for G1/S Checkpoint Activators Identifies a Selective Activator of EIF2AK3/PERK Signalling

    Get PDF
    Human cancers often contain genetic alterations that disable G1/S checkpoint control and loss of this checkpoint is thought to critically contribute to cancer generation by permitting inappropriate proliferation and distorting fate-driven cell cycle exit. The identification of cell permeable small molecules that activate the G1/S checkpoint may therefore represent a broadly applicable and clinically effective strategy for the treatment of cancer. Here we describe the identification of several novel small molecules that trigger G1/S checkpoint activation and characterise the mechanism of action for one, CCT020312, in detail. Transcriptional profiling by cDNA microarray combined with reverse genetics revealed phosphorylation of the eukaryotic initiation factor 2-alpha (EIF2A) through the eukaryotic translation initiation factor 2-alpha kinase 3 (EIF2AK3/PERK) as the mechanism of action of this compound. While EIF2AK3/PERK activation classically follows endoplasmic reticulum (ER) stress signalling that sets off a range of different cellular responses, CCT020312 does not trigger these other cellular responses but instead selectively elicits EIF2AK3/PERK signalling. Phosphorylation of EIF2A by EIF2A kinases is a known means to block protein translation and hence restriction point transit in G1, but further supports apoptosis in specific contexts. Significantly, EIF2AK3/PERK signalling has previously been linked to the resistance of cancer cells to multiple anticancer chemotherapeutic agents, including drugs that target the ubiquitin/proteasome pathway and taxanes. Consistent with such findings CCT020312 sensitizes cancer cells with defective taxane-induced EIF2A phosphorylation to paclitaxel treatment. Our work therefore identifies CCT020312 as a novel small molecule chemical tool for the selective activation of EIF2A-mediated translation control with utility for proof-of-concept applications in EIF2A-centered therapeutic approaches, and as a chemical starting point for pathway selective agent development. We demonstrate that consistent with its mode of action CCT020312 is capable of delivering potent, and EIF2AK3 selective, proliferation control and can act as a sensitizer to chemotherapy-associated stresses as elicited by taxanes

    Cell-based screen for altered nuclear phenotypes reveals senescence progression in polyploid cells after Aurora kinase B inhibition.

    Get PDF
    Cellular senescence is a widespread stress response and is widely considered to be an alternative cancer therapeutic goal. Unlike apoptosis, senescence is composed of a diverse set of subphenotypes, depending on which of its associated effector programs are engaged. Here we establish a simple and sensitive cell-based prosenescence screen with detailed validation assays. We characterize the screen using a focused tool compound kinase inhibitor library. We identify a series of compounds that induce different types of senescence, including a unique phenotype associated with irregularly shaped nuclei and the progressive accumulation of G1 tetraploidy in human diploid fibroblasts. Downstream analyses show that all of the compounds that induce tetraploid senescence inhibit Aurora kinase B (AURKB). AURKB is the catalytic component of the chromosome passenger complex, which is involved in correct chromosome alignment and segregation, the spindle assembly checkpoint, and cytokinesis. Although aberrant mitosis and senescence have been linked, a specific characterization of AURKB in the context of senescence is still required. This proof-of-principle study suggests that our protocol is capable of amplifying tetraploid senescence, which can be observed in only a small population of oncogenic RAS-induced senescence, and provides additional justification for AURKB as a cancer therapeutic target.This work was supported by the University of Cambridge, Cancer Research UK, Hutchison Whampoa; Cancer Research UK grants A6691 and A9892 (M.N., N.K., C.J.T., D.C.B., C.J.C., L.S.G, and M.S.); a fellowship from the Uehara Memorial Foundation (M.S.).This is the author accepted manuscript. The final version is available from the American Society for Cell Biology via http://dx.doi.org/10.1091/mbc.E15-01-000

    Mechanism-based screen for G1/S checkpoint activators identifies a selective activator of EIF2AK3/PERK signalling.

    Get PDF
    Human cancers often contain genetic alterations that disable G1/S checkpoint control and loss of this checkpoint is thought to critically contribute to cancer generation by permitting inappropriate proliferation and distorting fate-driven cell cycle exit. The identification of cell permeable small molecules that activate the G1/S checkpoint may therefore represent a broadly applicable and clinically effective strategy for the treatment of cancer. Here we describe the identification of several novel small molecules that trigger G1/S checkpoint activation and characterise the mechanism of action for one, CCT020312, in detail. Transcriptional profiling by cDNA microarray combined with reverse genetics revealed phosphorylation of the eukaryotic initiation factor 2-alpha (EIF2A) through the eukaryotic translation initiation factor 2-alpha kinase 3 (EIF2AK3/PERK) as the mechanism of action of this compound. While EIF2AK3/PERK activation classically follows endoplasmic reticulum (ER) stress signalling that sets off a range of different cellular responses, CCT020312 does not trigger these other cellular responses but instead selectively elicits EIF2AK3/PERK signalling. Phosphorylation of EIF2A by EIF2A kinases is a known means to block protein translation and hence restriction point transit in G1, but further supports apoptosis in specific contexts. Significantly, EIF2AK3/PERK signalling has previously been linked to the resistance of cancer cells to multiple anticancer chemotherapeutic agents, including drugs that target the ubiquitin/proteasome pathway and taxanes. Consistent with such findings CCT020312 sensitizes cancer cells with defective taxane-induced EIF2A phosphorylation to paclitaxel treatment. Our work therefore identifies CCT020312 as a novel small molecule chemical tool for the selective activation of EIF2A-mediated translation control with utility for proof-of-concept applications in EIF2A-centered therapeutic approaches, and as a chemical starting point for pathway selective agent development. We demonstrate that consistent with its mode of action CCT020312 is capable of delivering potent, and EIF2AK3 selective, proliferation control and can act as a sensitizer to chemotherapy-associated stresses as elicited by taxanes

    AHR- and DNA-damage-mediated gene expression responses induced by benzo(a)pyrene in human cell lines

    No full text
    Carcinogens induce complex transcriptional responses in cells that may hold key mechanistic information. Benzo(a)pyrene (BaP) modulation of transcription may occur through the activation of the aryl hydrocarbon receptor (AHR) or through responses to DNA damage. To characterize further the expression profiles induced by BaP in HepG2 and MCF-7 cells obtained in our previous study, they were compared to those induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which activates AHR but does not bind to DNA, and anti-benzo(a)pyrene- trans-7,8-dihydrodiol-9,10-epoxide (BPDE), which binds directly to DNA but does not activate AHR. A total of 22 genes had altered expression in MCF-7 cells after both BaP and TCDD exposure, and a total of 29 genes had altered expression in HepG2 cells. In both cell lines, xenobiotic metabolism was upregulated through induction of NQO1, MGST1, and CYP1B1. A total of 78 expression changes were induced by both BaP and BPDE in MCF-7 cells, and a total of 29 expression changes were induced by both BaP and BPDE in HepG2 cells. These genes were predominantly involved in cell cycle regulation, apoptosis, and DNA repair. BaP and BPDE caused the repression of histone genes in both cell lines, suggesting that regulation of these genes is an important component of the DNA damage response. Interestingly, overlap of the BPDE and TCDD gene expression profiles was also observed. Furthermore, some genes were modulated by BaP but not by TCDD or BPDE, including induction of CRY1 and MAK, which may represent novel signaling pathways that are independent of both AHR activation and DNA damage. Promoter analysis identified candidate genes for direct transcriptional regulation by either AHR or p53. These analyses have further dissected and characterized the complex cellular response to BaP

    Biosynthesis of a steroid metabolite by an engineered Rhodococcus erythropolis strain expressing a mutant cytochrome P450 BM3 enzyme

    Get PDF
    In the present study, the use of Rhodococcus erythropolis mutant strain RG9 expressing the cytochrome P450 BM3 mutant M02 enzyme has been evaluated for whole-cell biotransformation of a 17-ketosteroid, norandrostenedione, as a model substrate. Purified P450 BM3 mutant M02 enzyme hydroxylated the steroid with >95 % regioselectivity to form 16-β-OH norandrostenedione, as confirmed by NMR analysis. Whole cells of R. erythropolis RG9 expressing P450 BM3 M02 enzyme also converted norandrostenedione into the 16-β-hydroxylated product, resulting in the formation of about 0.35 g/L. Whole cells of strain RG9 itself did not convert norandrostenedione, indicating that metabolite formation is P450 BM3 M02 enzyme mediated. This study shows that R. erythropolis is a novel and interesting host for the heterologous expression of highly selective and active P450 BM3 M02 enzyme variants able to perform steroid bioconversions

    3-hydroxybenzoate 6-hydroxylase from Rhodococcus jostii RHA1 contains a phosphatidylinositol cofactor

    No full text
    3-Hydroxybenzoate 6-hydroxylase (3HB6H, EC 1.13.14.26) is a FAD-dependent monooxygenase involved in the catabolism of aromatic compounds in soil microorganisms. 3HB6H is unique among flavoprotein hydroxylases in that it harbors a phospholipid ligand. The purified protein obtained from expressing the gene encoding 3HB6H from Rhodococcus jostii RHA1 in the host Escherichia coli contains a mixture of phosphatidylglycerol and phosphatidylethanolamine, which are the major constituents of E. coli's cytoplasmic membrane. Here, we purified 3HB6H (RjHB6H) produced in the host R. jostii RHA#2 by employing a newly developed actinomycete expression system. Biochemical and biophysical analysis revealed that Rj3HB6H possesses similar catalytic and structural features as 3HB6H, but now contains phosphatidylinositol, which is a specific constituent of actinomycete membranes. Native mass spectrometry suggests that the lipid cofactor stabilizes monomer-monomer contact. Lipid analysis of 3HB6H from Pseudomonas alcaligenes NCIMB 9867 (Pa3HB6H) produced in E. coli supports the conclusion that 3HB6H enzymes have an intrinsic ability to bind phospholipids with different specificity, reflecting the membrane composition of their bacterial host.</p
    corecore