111 research outputs found

    Exchange and spin Jahn-Teller distortions for a triangular cluster of spin-1/2

    Full text link
    We study the effects of magnetoelastic coupling on the degenerate ground state of the spin-1/2 antiferromagnetic Heisenberg model for the regular triangular spin cluster. Static displacement of spins spontaneously lifts the degeneracy of the ground state through the distance dependence of exchange coupling, i.e., a spin Jahn-Teller mechanism takes place. On the other hand, dynamical displacement does not lift the degeneracy, though the cluster distorts spontaneously. The energy decrease obtained by dynamical theory is twice as large as that obtained by static theory because of quantum fluctuation.Comment: 4 pages, 1 figure. Accepted by JPSJ. Clarified some setences. Corrected typo

    Magnetoelectric domain wall dynamics and its implications for magnetoelectric memory

    Get PDF
    Domain wall dynamics in a magnetoelectric antiferromagnet is analyzed, and its implications for magnetoelectric memory applications are discussed. Cr2_2O3_3 is used in the estimates of the materials parameters. It is found that the domain wall mobility has a maximum as a function of the electric field due to the gyrotropic coupling induced by it. In Cr2_2O3_3 the maximal mobility of 0.1 m/(s×\timesOe) is reached at E≈0.06E\approx0.06 V/nm. Fields of this order may be too weak to overcome the intrinsic depinning field, which is estimated for B-doped Cr2_2O3_3. These major drawbacks for device implementation can be overcome by applying a small in-plane shear strain, which blocks the domain wall precession. Domain wall mobility of about 0.7 m/(s×\timesOe) can then be achieved at E=0.2E=0.2 V/nm. A split-gate scheme is proposed for the domain-wall controlled bit element; its extension to multiple-gate linear arrays can offer advantages in memory density, programmability, and logic functionality.Comment: 5 pages, 2 figures, revised and corrected version, accepted in Applied Physics Letter

    A new method for deriving the stellar birth function of resolved stellar populations

    Get PDF
    We present a new method for deriving the stellar birth function (SBF) of resolved stellar populations. The SBF (stars born per unit mass, time, and metallicity) is the combination of the initial mass function (IMF), the star formation history (SFH), and the metallicity distribution function (MDF). The framework of our analysis is that of Poisson Point Processes (PPPs), a class of statistical models suitable when dealing with points (stars) in a multidimensional space (the measurement space of multiple photometric bands). The theory of PPPs easily accommodates the modeling of measurement errors as well as that of incompleteness. Our method avoids binning stars in the color-magnitude diagram and uses the whole likelihood function for each data point; combining the individual likelihoods allows the computation of the posterior probability for the population's SBF. Within the proposed framework it is possible to include nuisance parameters, such as distance and extinction, by specifying their prior distributions and marginalizing over them. The aim of this paper is to assess the validity of this new approach under a range of assumptions, using only simulated data. Forthcoming work will show applications to real data. Although it has a broad scope of possible applications, we have developed this method to study multi-band Hubble Space Telescope observations of the Milky Way Bulge. Therefore we will focus on simulations with characteristics similar to those of the Galactic Bulge

    Structural, orbital, and magnetic order in vanadium spinels

    Full text link
    Vanadium spinels (ZnV_2O_4, MgV_2O_4, and CdV_2O_4) exhibit a sequence of structural and magnetic phase transitions, reflecting the interplay of lattice, orbital, and spin degrees of freedom. We offer a theoretical model taking into account the relativistic spin-orbit interaction, collective Jahn-Teller effect, and spin frustration. Below the structural transition, vanadium ions exhibit ferroorbital order and the magnet is best viewed as two sets of antiferromagnetic chains with a single-ion Ising anisotropy. Magnetic order, parametrized by two Ising variables, appears at a tetracritical point.Comment: v3: streamlined introductio

    Dynamical Structure Factor of the Three-Dimensional Quantum Spin Liquid Candidate NaCaNi2F7

    No full text
    We study the dynamical structure factor of the spin-1 pyrochlore material NaCaNi2F7, which is well described by a weakly perturbed nearest-neighbour Heisenberg Hamiltonian, Our three approaches- molecular dynamics simulations, stochastic dynamical theory, and linear spin wave theory-reproduce remarkably well the momentum dependence of the experimental inelastic neutron scattering intensity as well as its energy dependence with the exception of the lowest energies. We discuss two surprising aspects and their implications for quantum spin liquids in general: the complete lack of sharp quasiparticle excitations in momentum space and the success of the linear spin wave theory in a regime where it would be expected to fail for several reasons

    Classical Topological Order in Kagome Ice

    Full text link
    We examine the onset of classical topological order in a nearest-neighbor kagome ice model. Using Monte Carlo simulations, we characterize the topological sectors of the groundstate using a non-local cut measure which circumscribes the toroidal geometry of the simulation cell. We demonstrate that simulations which employ global loop updates that are allowed to wind around the periodic boundaries cause the topological sector to fluctuate, while restricted local loop updates freeze the simulation into one topological sector. The freezing into one topological sector can also be observed in the susceptibility of the real magnetic spin vectors projected onto the kagome plane. The ability of the susceptibility to distinguish between fluctuating and non-fluctuating topological sectors should motivate its use as a local probe of topological order in a variety of related model and experimental systems.Comment: 17 pages, 9 figure

    Spin fluctuations and pseudogap in the two-dimensional half-filled Hubbard model at weak coupling

    Full text link
    Starting from the Hubbard model in the weak-coupling limit, we derive a spin-fermion model where the collective spin excitations are described by a non-linear sigma model. This result is used to compute the fermion spectral function A(k,ω)A({\bf k},\omega) in the low-temperature regime where the antiferromagnetic (AF) coherence length is exponentially large (``renormalized classical'' regime). At the Fermi level, A(kF,ω)A({\bf k}_F,\omega) exhibits two peaks around ±Δ0\pm\Delta_0 (with Δ0\Delta_0 the mean-field gap), which are precursors of the zero-temperature AF bands, separated by a pseudogap.Comment: 6 pages, 2 figures, revised versio

    Dispersion of the neutron resonance in cuprate superconductors

    Full text link
    We argue that recently measured downward dispersion of the neutron resonance peak in cuprate superconductors is naturally explained if the resonance is viewed as a spin-1 collective mode in a d-wave superconductor. The reduction of the resonant frequency away from the antiferromagnetic wave vector is a direct consequence of the momentum dependence of the d-wave superconducting gap. When the magnetic correlation length becomes large, the dispersion should become magnon-like, i.e., curve upwards from (pi,pi).Comment: 4 pages, 3 inline PostScript figures. Added reference
    • …
    corecore