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ABSTRACT

We present a new method for deriving the stellar birth function (SBF) of resolved stellar populations. The SBF
(stars born per unit mass, time, and metallicity) is the combination of the initial mass function (IMF), the star
formation history (SFH), and the metallicity distribution function (MDF). The framework of our analysis is that of
Poisson Point Processes (PPPs), a class of statistical models suitable when dealing with points (stars) in a
multidimensional space (the measurement space of multiple photometric bands). The theory of PPPs easily
accommodates the modeling of measurement errors as well as that of incompleteness. Our method avoids binning
stars in the color–magnitude diagram and uses the whole likelihood function for each data point; combining the
individual likelihoods allows the computation of the posterior probability for the populationʼs SBF. Within the
proposed framework it is possible to include nuisance parameters, such as distance and extinction, by specifying
their prior distributions and marginalizing over them. The aim of this paper is to assess the validity of this new
approach under a range of assumptions, using only simulated data. Forthcoming work will show applications to
real data. Although it has a broad scope of possible applications, we have developed this method to study multi-
band Hubble Space Telescope observations of the Milky Way Bulge. Therefore we will focus on simulations with
characteristics similar to those of the Galactic Bulge.
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1. INTRODUCTION

The study of resolved stellar populations is going through a
remarkable growth period, with space observatories like the
Hubble Space Telescope (HST) providing high-resolution
probes through nearby galaxies, and all-sky surveys like the
Sloan Digital Sky Survey and Panoramic Survey Telescope and
Rapid Response System revealing ever more substructure in the
Local Group. Upcoming missions like the James Webb Space
Telescope and the Large Synoptic Survey Telescope will
further increase this wealth of data. A big challenge for the
current and next generations of astronomers is that of
developing new tools, or refining existing ones, to make the
best out of these data, understand the underlying errors, and
properly interpret the results. Ultimately, in the context of
stellar populations, this means correctly interpreting the
features observed in the color–magnitude diagram (CMD), or
in equivalent diagrams.

The recent literature offers several examples of such methods
that can be grouped into two broad categories: methods based
on binning the data using a grid defined on the CMD, and
methods that do not bin the data, but instead use each
individual measurement separately. The latter, at least in some
respects, can be seen as the limit of the former in the case of
very small grid cells where only 0 or 1 stars are observed in
each cell.

Most of the bin-based methods, with their own differences,
follow a similar approach. They first create a set of basis
functions, i.e., simulated CMDs of simple stellar populations;
these are usually realized with Monte Carlo techniques,

accounting for the photometric errors and selection effects.
They then linearly combine the basis functions to produce a
synthetic CMD for the whole population. The fit is then
performed by dividing the CMD into cells and minimizing a
statistic comparing the predicted and observed numbers of stars
in each cell, in order to find the appropriate weight for each
basis function. These weights correspond to the intensity of the
star formation episode associated with each simple stellar
population. Examples of bin-based methods are those devel-
oped by Harris & Zaritsky (2001), Vergely et al. (2002),
Dolphin (2002), Ng et al. (2002), Cignoni et al. (2006), and
Aparicio & Hidalgo (2009). These methods have been
successfully applied to a wide range of observations. For
example, Tolstoy et al. (2009) give a review of the recent
studies on resolved stellar populations of Local Group dwarf
galaxies and show the numerous important results that have
been achieved thanks to the synthetic CMD approach.
However, this approach becomes harder to apply when very
few stars are observed, making a large number of CMD cells
empty, or equivalently, forcing the use of very large cells. This
limitation is mostly evident when more than two photometric
bands of data are available, making the number of useful cells
even smaller, a problem that can be seen as one form of the
curse of dimensionality.
Unbinned methods try and use the full information available

for each datum, taking into account the noise associated with
individual measurements. Generally speaking, the methods in
this class are based on computing the probability of each
observed datum given the available stellar evolutionary models.
The individual probabilities are then appropriately combined to
derive the population parameters. Again, several such methods
are described in the literature, each with its own peculiarities
(e.g., Tolstoy & Saha 1996; Hernandez et al. 1999; Jørgensen
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& Lindegren 2005; Naylor & Jeffries 2006; Da Rio et al. 2010;
Walmswell et al. 2013). The last paper also gives an insightful
and detailed review of the differences between (and within)
binned and unbinned methods.

To build our method we start by recognizing that, on a
population scale, the star formation process can be described as
a stochastic process in which individual stars are drawn
independently from a parent distribution; this kind of process
can be modeled as a type of random process known as a
Poisson Point Process (PPP). If we define our PPP on the space
of intrinsic physical parameters, i.e., if we consider stellar age,
mass, and metallicity as the stochastic variables, the parent
distribution is simply the stellar birth function (SBF), which
represents the probability of there being a star with a certain
age, mass, and metallicity. The SBF can be regarded as a
combination of the star formation history (SFH), initial mass
function (IMF), and metallicity distribution function (MDF), a
concept illustrated by Hodge (1989).

The key to our method is that in the PPP formalism, one can
map the probability distribution on the intrinsic parameter
space to an equivalent probability distribution on a space of
arbitrary observable quantities, such as (noisy) photometric
observations or individual stellar spectra. Additionally, this
mapping can include the fact that some stars, while born and
hence relevant to the SBF, cannot be observed; this part of the
mapping is related to data incompleteness and is technically
referred to as thinning. For example, these stars may have
evolved off the main sequence or be fainter than the detection
limit of the specific observations. The form of this mapping is
such that for each observed star, we can easily compute the
likelihood of any combination of intrinsic parameters, includ-
ing nuisance parameters (NPs) such as distance or reddening.
These likelihoods are then combined to compute the posterior
probability of any given SBF in a way that fully uses each
individual measurement’s information.

The statistical model we derive is similar to the one by Weisz
et al. (2013), where the authors use a hierarchical Bayesian
approach to obtain the posterior probability of the slope of the
high-mass IMF in the context of stellar clusters analysis. Other
than using a different path for reaching a similar model
description, there are further differences between our approach
and that by Weisz et al. (2013). For example, we are not being
limited to studying a single parameter, since we include the
whole SFH and MDF in addition to the IMF slope. Moreover,
we simulated data to test our method, taking into account both
noise and incompleteness and we have developed and
described a full numerical approach for the actual calculation
of both the likelihood and completeness functions. This is in
contrast to the approach of Weisz et al. (2013) who do not
derive the likelihoods from photometric measurements, but
instead use an analytic approximation to describe the like-
lihoods of individual objects as well as the incompleteness
function. Within the astronomical community PPPs have been
used to study problems in other areas; without the presumption
of being exhaustive, but only to show the broad scope of
application of PPPs, we mention Tabachnik & Tremaine
(2002), Youdin (2011), Foreman-Mackey et al. (2014) in the
area of exoplanet search and population census, Lombardi et al.
(2013) who use PPPs to study the local Schmidt law in
molecular clouds, and Hugeback et al. (2007) who model the
Quasar Luminosity function in magnitude-redshift space as
a PPP.

Our implementation of PPPs for SBF determination requires
a discretization of the intrinsic physical parameter space on a
grid. This is common to all the existing methods since all the
mappings between physical parameters and observations are
based on stellar models, which only exist for finite grids of
parameters. Our method formally accounts for such approx-
imation in its definition. It is important to note that if the
adopted grid of models is fine enough to resolve each star’s
likelihood function, the discretized approach is substantially
equivalent to a completely continuous one.
The PPP formalism has several important advantages: (i) it

is an exact and faithful mathematical analogue to the generally
accepted idea of stellar population formation, (ii) it allows us to
exploit synergies between subfields of astronomy and between
astronomy and applied mathematics and statistics, (iii) it is
conveniently modular, and (iv) it is flexible and extendible.
Exactness (i) makes the formalism a useful and astrophysically
motivated starting point for developing practical techniques. In
particular, all of the existing CMD fitting techniques mentioned
above can be derived from the fully general PPP formalism by
taking various combinations of simplifying assumptions,
approximations, and limits. Intra- and inter-disciplinary
synergies (ii) simplify the process of devising new computa-
tional techniques and verifying old ones. For example, we use
lessons learned from medical imaging, specifically positron
emission tomography to find the best-fit SBF. Other investi-
gators can now apply the vast statistical literature on different
types of optimal approximate methods to vet existing methods
(e.g., to show that they are theoretically unbiased and have
good variance properties) and develop new ones. As we will
show in the paper, the modularity of the SBF posterior
probability is computationally convenient (iii), since it allows
us to separately precompute several of the necessary quantities
(e.g., the individual likelihoods) and makes the other
computations involved parallelizable and therefore fast. This
modularity also makes the formalism and method flexible and
extendable (iv). For example, we use a specific set of stellar
evolutionary libraries and photometric bands, but the formalism
and method both apply to any set of libraries and photometric
bands. Moreover, the method can also be expanded to include
other kinds of observations, such as spectra of individual stars,
purely by modifying the likelihood and thinning functions. We
will show examples in which spectroscopic constraints are
incorporated to provide strong information on the popula-
tions’ MDF.
In future work, we intend to exploit our method’s flexibility

to analyze the data from the Galactic Bulge Treasury Program
(Brown et al. 2009, 2010). This is a deep HST data set which
includes five photometric bands, is supplemented by available
ground-based stellar spectroscopy, and which targets four fields
in the Galactic Bulge, where there exists significant star-to-star
distance and reddening variation.
The paper is structured as follows: we describe the basics of

PPPs in Section 2. We then describe the adopted library
of stellar models in Section 3. Section 4 deals with the
treatment of measurement errors and incompleteness and how
they affect the specifications of the individual likelihoods.
Section 5 describes the explicit solution of the population
properties. We outline the test catalogs simulation process
in Section 6 and apply our method on such catalogs and show
the results in Section 7. We summarize our findings in
Section 8.
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2. POISSON POINT PROCESSES

A PPP is a statistical model that describes the counting of
points in a multi-dimensional space. A full description of PPPs
and some of their applications is given in Streit (2010). Given
the unfamiliar nature of these models to the astronomical
community, in the following we summarize the basics of PPPs
following the development in Streit (2010). In particular, we
focus on the aspects of PPPs that are relevant to the analysis of
stellar populations.

A realization of a PPP consists of a certain number of points
observed in a state space  . For our purposes, the state space is
a 3D space in which the coordinates are stellar mass, age, and
metallicity.4 We will show in the following how the PPP of
interest in the study of the SBF, which is defined in the stellar
parameters space, can be related to a different PPP, i.e., the
noisy incomplete set of photometric measurement we have
access to.

One can extend  to include other dimensions that can be of
interest in the study of stellar populations, such as stellar
distance, reddening, and multiplicity properties. The formalism
is very similar and, for the sake of simplicity, we will drop
these additional dimensions in laying out the formalism.
However, we will show an example where we explicitly
include distance as a nuisance parameter in Section 7.4. While
the state space  can in principle be infinite, we are interested
in realizations of PPPs on a bounded subset  of  . For the
purpose of stellar population analysis, the subset  will be
defined by the range of stellar parameters in the specific set of
adopted models (see Section 3).

In describing a PPP, both the number and the distribution of
points over the state space are random variables. A realization
of a PPP in  is denoted by

( )n s s, { , , } (1)n1x = ¼

where the total number of points n is explicitly indicated and
the ordering of the si points is irrelevant; the si can, in principle,
include duplicates. The most important quantity that char-
acterizes a PPP is its intensity, s( )l , which describes how the si
points are distributed in the state space. The intensity must be
non-negative everywhere and has to integrate to a finite value
over the state space:

s s s ds, ( ) 0; 0 ( ) . (2)òl l" Î < ¥⩾ ⩽ 
Two conditions must be met for a model to be a PPP: (1) the

total number of points in the subset , N, has a Poisson
distribution with parameter s ds( )ò l and (2) if 1 and 2 are
disjoint, then N 1 and N 2 are independent.

Having set the stage, we show how a realization ξ can be
generated. First, the number of points n is a draw of the Poisson
variable, N, distributed according to:

p n
n

e s ds( )
!

; ( ) . (3)N

n

ò
m

m l= ºm-


The integral of the intensity therefore gives the expected
number of points. The location of these points in  is given by
n independent draws of the random variable S with probability
distribution function (pdf) given by

p s
s

s ds
( )

( )

( )
. (4)S

ò
l

l
=


We introduce a random variable N( , )X º  , where N is

the number of points and s s{ , , }n1= ¼ is the points set.
The probability of a generic event evaluated at xX = is given
by

( )p p n p s s n( ) ( ) { , , } (5)N N n1x = ¼X 

where the first factor is given by Equation (3), the second is

( )p s s n n p s{ , , } ! ( ), (6)N n
i

n

S i1
1

¼ =
=



and pS is the pdf for a single point, as given by Equation (4).
The n! factor is due to the fact that there are n! possible
combinations of the siʼs that correspond to the unordered set  .
Combining everything we obtain that

p e s( ) ( ). (7)
i

n

i
1

x l= m
X

-

=

In the context of stellar populations, the intensity function
corresponds to the SBF, i.e., represents how many stars have
been formed per unit time, mass, and metallicity, within the
patch of the sky under study. This function is a combination of
the IMF, the SFH, and the MDF. While in principle we might
expect the IMF to be a function of both age and metallicity, in
the following we will make the simplifying assumption that it is
instead independent with respect to both. Therefore

s m a z m a z( ) ( , , ) ( ) ( , )l l= µ F .
Equation (7) gives the probability of n stars being formed

with a given set of properties m a z m a z{( , , ) , , ( , , ) }n1  , i.e.,
it is the probability of the set of physical parameters m a z( , , ),
given λ; p p( ) ( )x x l=X X ∣ . Using Bayes’ theorem, we can
write the probability of λ given the available m a z{( , , )}:

p p p( ) ( ) ( ) (8)l x x l lµL X L

where the normalization factor is omitted. If we had the
parameters m a z( , , ) for all the stars in our sample, our
computational problem would be exploring the pdf of λ defined
in Equation (8). However, the problem to solve in the case of
stellar populations is that of determining λ given the number of
observed stars and a set of flux or magnitude measurements for
each star. The physical parameters m a z( , , ) are not directly
observable or accessible, so stellar models must be used to
interpret the measured quantities in terms of m a z( , , ). The
uncertainties in these physical parameters will depend upon the
measurement and modeling errors. Furthermore, of the stars
that are born according to the true, underlying λ, only some
will be observable. The incompleteness of the data is due to
both stellar evolution (massive stars ending their lives as stellar
remnants) and observational limits (the ability to detect an
object and of measure its flux given the noise and crowding
properties of the specific observations).

4 Even if we denote the metallicity with the lowercase symbol z, we always
make use of the spectroscopic definition of metallicity: [M/H] ( )log

n

n
metals

H
=

( )log n

n
metals

H
-


. Because models can include variations in α-element

abundances, [Fe/H] and [M/H] are not necessarily the same. However, because
a given set of models is computed using a well-defined [α/Fe] versus [Fe/H]
relation, [Fe/H] will be sometimes used or mentioned instead of [M/H].
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The theory of PPPs, as outlined in Streit (2010), easily
accommodates measurement processes and incompleteness.5

We summarize the treatment of both below.

2.1. Measurement Process and Errors

The unknown intensity λ assumes values in the space  of
stellar mass, age and metallicity. The actual measurements are
made in another space, which we indicate with  and which
can be thought of as a k-dimensional magnitude space, where k
is the number of available bands.6

For a set of stellar parameters s m a z( , , )= , we can
determine the probability p t s( )∣ of observing a set
of magnitudes t M M( , , )k1= ¼ using stellar models and
observational uncertainties. Given a realization x =
n m a z m a z( , {( , , ) , , ( , , ) })n1 ¼ of a PPP with intensity λ, it
can be shown that n M M M M( , {( , , ) , , ( , , ) })k k n1 1 1h = ¼ ¼ ¼
is a realization of a PPP with intensity equal to:

t p t s s ds( ) ( ) ( ) . (9)òn l= 

Computing the likelihood p t s( )∣ requires knowledge of the
underlying noise properties. We will show in Section 4 how we
determine p t s( )∣ for our simulated catalogs.

2.2. Incompleteness

When a stellar field is observed, some of the stars that
actually formed within that field cannot be detected. They may
have evolved into stellar remnants (white dwarfs, neutron stars
and black holes) or been completely destroyed by deflagration.
Some of the remnants may technically be observable, but they
do not end up in regions of the CMD7 that can be studied using
stellar evolution models in the traditional sense. We currently
neglect all evolution beyond the red giant branch (RGB) phase
in our treatment. The rapid post-RGB evolutionary phases
could be re-introduced into our framework, provided the
necessary models for the later stages of stellar evolution are
included.

Other stars might instead not be observable because they are
intrinsically too faint (below the detection threshold) or are at
very small angular separation from brighter neighbors that
hamper their detection (an effect known as crowding or
confusion). Whatever the source of incompleteness, it must be
accurately modeled and can be included in the framework of
PPPs. If we indicate with m a z0 ( , , ) 1a⩽ ⩽ the probability of
detecting a star with a given mass, age and metallicity, given a
realization n m a z m a z( , {( , , ) , , ( , , ) })n1x = ¼ , the corre-
sponding incomplete realization is obtained by retaining each
m a z( , , )i with probability m a z(( , , ) )ia . The incomplete
realization is given by l m a z m a z( , {( , , ) , , ( , , ) })l1x = ¼a

with l n⩽ . It is possible to show that the incomplete process is
still a PPP, with intensity:

m a z m a z m a z( , , ) ( , , ) ( , , ). (10)l l a=a

It is important to note that incompleteness is a property
of the models and is a fundamental part of the model definition.
In Section 4 we will show a possible way to estimate

m a z( , , )a .

2.3. Recap: PPPs for Noisy, Incomplete Photometric Data
and a Discrete Parameter Space

Combining everything together, the measurements that one
has after observing a patch of the sky and performing
photometry on the resulting images is a realization of an
incomplete, noisy PPP in a k-dimensional magnitude space. We
are interested in going from these measurements to a solution
for λ, a complete PPP in the three-dimensional space of
physical parameters m a z( , , ). Solving for λ means solving for
a continuous function over the whole  space. This can be
accomplished by making some simplifying assumptions. First,
we assume that the IMF is a power-law with a single slope γ,

m m( ) dn

dm
= µ g . Second, we assume that a z( , )F , the

combined SFH-MDF, is piecewise-constant. In our implemen-
tation, the constant intervals are evenly spaced; their centers
form a regular grid. This simplification is equivalent to
discretizing the age–metallicity parameter space and weighting
each grid point by the implied grid-cell’s volume. Solving for λ
is equivalent to solving for the slope γ and for the number of
stars that have formed within each (a, z) cell:
p m a z p n( ( , , )) ( , { } )ia z,l gº ; for ease of notation, ia z, or
im a z, , indicate tuples of indices, i i( , )a z and i i i( , , )m a z ,
respectively.
The effective discretization of the parameter space implies a

substitution of the integral in Equation (9) with a sum over the
cells. The final probability for λ, given the incomplete
measurements l M M M M( , {( , , ) , , ( , , ) })k k l1 1 1h = ¼ ¼ ¼ is
thus

( ) ( ){ } { }p n e p n, , , (11)i
l

l i,a z a z, ,g h n gµ
æ

è
çççç

ö

ø
÷÷÷÷

m
a

- a

where

n w . (12)
i

i i i

m a z

a z m m a z

, ,

, , ,åm a=a

The indices i i i i( , , )m a z m a z, , = run over the mass, age and
metallicity cells, and wim is the integral of the IMF across the
imth cell, which has a simple analytic expression in the case of a
single power law. The index l runs over the observed stars.
Because the IMF is normalized, we have that

n w n w ni i i i i i im a z m a z m m a z, , ,å å= = .
The l,na are integrals of incomplete measurement process

intensity over the parameter space (see Equation (9) and
Section 2.2). Explicitly,

n w f l( ), (13)l
i

i i i i,

m a z

a z m m a z m a z

, ,

, , , , ,ån a=a

5 Incompleteness is technically referred to as thinning.
6 It may be argued that for all modern imaging systems, the fundamental
observed quantities are fluxes, or better, photon counts (or count rates for near-
infrared detectors). Magnitudes are derived quantities and, given the non linear
relation between fluxes and magnitudes, the noise characteristics are definitely
different between them. However, in our ideal experiments we assume that we
have complete knowledge of the noise in magnitude space. Likewise, in
realistic applications, the noise can be estimated in either flux or magnitude
space using artificial stars experiments. As long as the noise is treated
consistently, it should not matter which variable is considered.
7 Even if we refer to CMDs and display relevant figures using this tool, we
emphasize that our method treats magnitudes as the real variables, as only
individual magnitudes are the product of the measurement process, while
colors are derived quantities.
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where

( )( )

f l

p M M m a z dm da dz

( )

, , , , (14)

i

k l1

m a z

im a z

, ,

, ,
ò

=

¼

is the integral of the lth star’s likelihood function over the
cell- corresponding to i i i( , , )m a z ; we show how f(l) is

calculated in Section 4.2.
To complete the model specification, we need to choose a

prior p n( , { })ia z,g . We have already specified part of the prior
by choosing the range covered by the (m, a, z) grid. We discuss
the rest of the prior specification in Section 5.

Equations (12) and (13) can be modified to add further
dimensions to the problem, e.g., NPs such as distance or
extinction, indicated globally by π. Adding additional para-
meters requires defining the incompleteness, stellar likelihoods,
and intensity prior over the expanded parameter set
m a z( , , , )p . If we do not attempt to solve for the intensity as
a function of π, we can marginalize over π before attempting to
solve for m a z( , , )l ; this alters the incompleteness, stellar
likelihoods, and intensity prior by a (possibly different)
constant multiplicative factor at each m a z( , , ) value. We will
show an application involving NPs in Section 7.4.

We will show in Section 4 how the individual terms of
Equation (11) can be computed. The practical solution of the
problem of computing p n( , { } )ia z,g h∣ will be given in
Section 5, where we apply a Markov Chain Monte Carlo
(MCMC) algorithm to generate samples from this distribution.

One of the fundamental assumptions underlying our model is
that the stars are independently independently drawn from the
IMF. Such an assumption might not necessarily hold true,
according to some theories of star formation. In that case our
method (and all the methods that assume that there is an IMF)
would fail. The impact of such assumption might be more
severe in the study of young massive clusters, where feedback
is particularly important. However we believe that for the study
of the Galactic Bulge the independence condition is satisfied. In
the Bulge or in other regions not actively forming stars, stars
that are observed within one patch of the sky, have formed
possibly in different regions, at different times, and have
undergone dynamical mixing. Therefore, at their formation,
they were truly independent. If this is the case, we can still try
and infer the slope of an IMF that can be thought as a parent
distribution averaged across the formation history of that
population.

3. THE MODEL GRID

In order to convert the measured magnitudes into physical
parameters, i.e., in order to interpret the data in terms of
meaningful quantities, it is necessary to adopt stellar evolu-
tionary models. For our examples, we use models computed
with the Victoria-Regina code (VandenBerg et al. 2012),
updated with a heavy element mixture suited for the stellar
populations of the Galactic Bulge (VandenBerg et al. 2014).
The transformations from the model physical parameters

L L T g(log , log , log )eff to the observable magnitudes are
performed using synthetic spectra computed with the MARCS
stellar model atmospheres code (Gustafsson et al. 2008). As
explained in Section 4, we adopt one specific filter system, the
one for the Wide Field Camera 3 (WFC3) on board the HST;
however, the scope of our method is not limited to one set of

stellar models or a particular suite of photometric bands.
Assessment of the systematic uncertainties related to the use of
different stellar models, as well as the exploration of the best
possible combination of filters for deriving IMF, SFH and
MDF of resolved stellar populations is beyond the scope of this
paper.
For this work, we use a grid with a 2% spacing in mass,

2.5% in age, and 0.1 dex in [Fe/H]. The mass and age steps
correspond to a constant spacing in the logarithm of mass and
age, respectively. This type of spacing translates into a
conveniently more constant spacing between stellar models in
the CMD. However, the grid spacing does not have to be
regular for our technique to be applicable. Given that this
method was developed to deal with multi-band photometric
data for the Galactic bulge, we choose a range of parameters
that is suitable for the bulge stellar population; again, the grid
range can be changed and adapted to different problems.
Specifically, we have m M[0.2, 1.5]Î , a [7.0, 14.7]Î Gyr,
z [ 2.0, 0.4]Î - + dex.
The choice of the grid size and grid resolution has a practical

impact on the method and is a matter of compromise between
computing time and the ability to resolve rapid changes in

a z( , )F . The number of unknowns in our problem is almost
equal to the number of age–metallicity cells. Because we
choose to parametrize the IMF as a single power law, one
additional parameter is the slope of the IMF, γ. More complex
models for the IMF could in principle be chosen in other
applications, if there is reason to think that—or to explore
whether—the data may help constrain an IMF model with
increased complexity.
The choice of the mass, age, and metallicity grid resolution

must also be guided by the quality of the data at hand. One
should be able to resolve the individual likelihoods without
computationally expensive excessive oversampling. Unfortu-
nately, stars in different evolutionary phases have very different
likelihoods, in terms of how diffuse each likelihood is in the
physical parameter space m a z( , , ). For example, if we can
resolve a turnoff star’s age likelihood function, we are
oversampling the main sequence stars’ age likelihood func-
tions. We can use the typical photometric errors in the turnoff
region to estimate the precision attainable in age determination
and then use a fraction of that as the age-step of the grid. The
use of metallicity-sensitive photometric bands can increase the
resolving power of our observations for [Fe/H]. The WFC3/
UVIS F390W band, for example, covers a spectral region that,
in dwarf stars, contains strong metal lines.

4. NOISE, INCOMPLETENESS, AND LIKELIHOODS

We test the effectiveness of our method by simulating data
and comparing the input and recovered intensity functions. The
simulated quantities are stellar magnitudes. We use Gaussian
noise for the simulated magnitude measurements and assume
that the only errors involved are random errors. We further
assume that the noise in multiple photometric bands for the
same star is uncorrelated. For catalog generation and
incompleteness evaluation, we also assume that the detections
in each band are independent of each other, and that a star is
considered detected when it is detected independently in all
bands.
To estimate realistic noise levels for a typical stellar

population study, we use data from Brown et al. (2009,
2010). These papers present observations of four stellar fields
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toward the Galactic bulge. The data from the full observing
program will be analyzed in a forthcoming paper; for testing
our method, we use the subset of the data that was taken in the
OGLE29 low-extinction window. We also limit ourselves to
three of the five bands, namely F390W, F555W, and F814W,
respectively approximating Washington C, Johnson V, and
Johnson I, which is sufficient to demonstrate our method.
Because our simulations do not include distance and extinction
as parameters, we convert the apparent magnitudes into
absolute magnitudes by subtracting the average bulge distance
modulus (DM) and typical extinction in each of the three
bands.

For each band, we use the real data to estimate a relation
between the observed magnitudes and photometric uncertain-
ties. We first bin the observed stars in magnitude bins and take
the average photometric uncertainty in each bin. The
uncertainties come from PSF fitting photometry using DAO-
PHOT (Stetson 1987). We then fit a third-order polynomial to
the logarithm of the average uncertainty as a function of bin
magnitude. The fit coefficients are then used to compute the
typical photometric error as a function of magnitude (see
Figure 1).

We also adopt an incompleteness versus magnitude relation.
This relation is obtained by imposing that objects with
magnitude errors of 0.05, 0.1, 0.5, and 1 mag are detected in
100%, 95%, 50%, and 0% of the cases, respectively, and
linearly interpolating the incompleteness between these
magnitude values. These incompleteness curves are shown in
Figure 1. As in the data of Brown et al. (2009, 2010), the
F555W and F814W bands have lower uncertainties and
incompletenesses at fixed magnitude than the F390W band.
This means that the overall incompleteness of the simulated
observations is generally dominated by F390W. There could be
situations in which completeness does not only depend on the
stellar magnitudes, but also on the position across the field of
view. This is specially true for dense stellar clusters, given the
gradient in the crowding properties between the center and
outskirts (see, e.g., Gennaro et al. 2011). However the present
work has been developed to deal with HST observations of the
Galactic Bulge (Brown et al. 2009, 2010), with a small field of
view (∼4 arcmin) across which crowding is very homoge-
neous. We will limit ourselves to this simple situation where
incompleteness does not depend on position.

4.1. Computing m a z( , , )a

The incompleteness curves of Figure 1 represent the
probability of detecting a star given its measured magnitude.
The function m a z( , , )a represents the probability of detecting
a model star, for which we know the intrinsic, or error-free,
magnitudes M M M( , , )390 555 814

intr. At a single value of
m a z( , , ), the model incompleteness is an average of the
measured-magnitude incompleteness over the measured-mag-
nitude pdf. Since we require a star to be detected in all bands,
the incompleteness of a vector of measurements
M M M( , , )390 555 814

obs is the product of the incompleteness in
each band.
To compute α for each model grid cell centered on m a z( , , ),

we simulate the attempted measurement of j 1, , 1000= ¼
stars per grid cell. The 1000 m a z( , , ) j

intr values are randomly
uniformly extracted within the cell. For each of them,
M M M( , , ) j390 555 814

intr is computed using the library of stellar
models. Corresponding M M M( , , ) j390 555 814

obs are extracted from
Gaussians centered on M M M( , , ) j390 555 814

intr with the appro-
priate σʼs. Finally, using the curves in Figure 1 we
decide whether that star would have been observed or not.
This is done by comparing, for each band, the value of the
detection probability with a uniform random number between 0
and 1. If a star is not detected in one band, then it is considered
not detected at all. The number of recovered stars divided by
1000 is the approximate value of m a z( , , )a averaged over the
model cell.
There are several simplifying assumptions in our treatment.

In general, for real observations, the explicit form of the noise
is not known (even though it is often assumed to be Gaussian).
However, in the case of real observations, where real images of
stellar fields are used, the process described above can be
reproduced using artificial star tests. The latter consist of
introducing into the images under study stars of know
magnitudes (directly related to known m a z( , , ) through stellar
models) and then trying to measure the output magnitudes. By
using the exact same algorithmic sequence (including cuts,
a posteriori selections, detection criteria and so on) as used for
building the real catalog of observations, we can prepare a list
of input versus output (detected and undetected) stars. For the
computation of m a z( , , )a it is still possible to generate
m a z( , , ) j

intr and the corresponding M M M( , , ) j390 555 814
intr from

Figure 1. Realistic values of the typical error and completeness derived from data by Brown et al. (2009, 2010), for the three photometric bands considered in this
work. The x-axis indicate the measured magnitudes. Solid lines: error curves; dashed lines: completeness (detection probability); dotted vertical lines: 50%
completeness limit for that band.
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stellar models. The list of input stars can be searched for stars
with these magnitudes and the corresponding output can be
checked to see whether it corresponds to a valid detection.
Finally, the ratio of detection-to-input stars can be used as

m a z( , , )a .
The above description deals with incompleteness due to the

measurement process and crowding. These phenomena mostly
affect models toward the faint (low-mass) end of the
parameters grid. However, for the treatment of PPPs, we also
need to consider stars that contribute to λ but are no longer
observable because they have evolved away from the main
sequence. These stars are instead toward the high-mass end of
the model grid. To account for these lost stars, it suffices to
check whether the m a z( , , ) j

intr points that are generated per grid
cell in the previous step correspond to “alive” stars. If they do
not then they are simply considered as non-detected models
and contribute to lowering α for that cell.

For real observations there might be cases where further
a posteriori cuts are imposed to photometric catalogs. For
example, stars near the detection threshold are often removed
because their measurement uncertainties are difficult to
estimate.

In our simplified scheme, we assume we know everything
about the noise model and we also mention that, in realistic
cases, artificial star tests can be used to explore the noise
characteristics and derive the incompleteness function. How-
ever, even artificial star experiments may not capture all
possible sources of errors and, in general, one might be wary of
trusting the noisiest detections. If this is the case, any hard
magnitude cut imposed to a catalog must be included in the
computation of m a z( , , )a . The only difference with the
previously illustrated scheme is that the simulated values
M M M( , , ) j390 555 814

obs must also fall above the imposed thresh-
olds in order to be accounted for as detections. We will show
the impact of such cuts on the recovery of λ in Section 7.

Figure 2 shows m a z( , , )a for our grid of models assuming
the standard curves of Figure 1; incompleteness is color-coded
from dark blue ( m a z( , , ) 0a = ) to red ( m a z( , , ) 1a = ) .
Each model point corresponds to the center of a m a z( , , ) cell.
The CMDs in the top row show the values of m a z( , , )a when
no cut is applied, while in the middle row, a cut at M 9814 =
mag was applied, hence the sharp drop in incompleteness. To
illustrate the effects of stellar evolution on incompleteness we
separate the contribution to α from stars that have evolved,
shown in the bottom row; here it is possible to notice that for
the most massive model cells (in the red giant phase) a fraction
of the cell volume corresponds to stars that are no longer
observable, even when the central values m a z( , , ) for that cell
correspond to still-alive stars. For our method, the total

m a z( , , )a is the product of the incompleteness in the first
(or second) row with the incompleteness in the third row.

4.2. Individual Stellar Likelihoods

An individual likelihood is the probability of detecting a star
at M M M( , , )390 555 814

obs given the model parameters m a z( , , ).
The discretization of Equation (13) implies that the likelihoods,
f l( )im a z, ,

need to be integrated across the individual cells of the

parameters grid. To compute f(l), we use the following method.
For each parameter grid cell we generate 500 values of
m a z( , , ) j within the cell. We compute the corresponding

magnitudes M M M( , , ) j390 555 814
mod using the stellar models

library. We then evaluate the photometric σʼs at those
magnitudes. The magnitudes and σʼs completely characterize
the Gaussian likelihoods; for each star i in a simulated catalog,
with magnitudes M M M( , , )i390 555 814

obs we compute the value of

( )
( )

( )p M M M m a z, , ( , , )

1

2
exp 2 (15)

i j

j

390 555 814
obs

filt filt,

2
ps

c=
æ

è

ççççç

ö

ø

÷÷÷÷÷
´ -

with

M M
. (16)

j i

j

2

filt
390,555,814

filt,
mod

filt,
obs

filt,

2

åc
s

=
æ

è

ççççç

- ö

ø

÷÷÷÷÷=

We then average the likelihood over the 500 j-values. This
corresponds to a marginalization of the likelihoods across the
model grid cell.
The necessity of averaging the likelihoods over a model cell,

instead of just taking the likelihood value for, e.g., the cell
center, is apparent when considering evolutionary phases in
which a star’s position on the CMD rapidly changes. While on
the main sequence the changes are very slow, once a star
reaches the turnoff region it may move a substantial length (in
both magnitude and color) within a very short time. Because
these fast phases happen at different times for different stellar
masses and metallicities, it would be computationally very
intensive to define the models on a grid that is fine enough to
resolve the fastest stellar evolutionary phases for all m a z( , , )
combinations. However, the average across a cell allows for a
proper treatment of these phases even within the limits of the
grid resolution. Figure 3 shows an example of such a situation
for one of our simulated catalogs (black points), focusing on
two different regions of the CMD: the main sequence on the
left and the turnoff on the right. In light-blue we show the 500
models realizations for two different cells, centered on
M 0.59= and M0.92  respectively. Both cells are centered
on a= 12.05 Gyr and [Fe/H] = −0.3 dex. The width of the cells
is 2% in mass, 2.5% in age and 0.1 dex in metallicity. The
light-blue area is the transformation of the physical parameter
cube m m( d , a a z z, )d d  into the CMD.
The models at the cell centers are identified by the error

symbols, with error bar size equal to the average σ on the cell.
The symbols in pink are simulated catalog stars that are within
5s of at least one of the 500 realizations (where σ is the
uncertainty associated to each model realization, according to
the curves of Figure 1). The shades of pink correspond to high-
to-low (light-to-dark) likelihood values on a logarithmic scale.
The need to compute likelihoods over entire model cells is
particularly clear in the right panel. If we had considered only
the model corresponding to the grid cell center, many data
points would have been too far (in units of σ) to have any
likelihood at that cell even though their physical properties are
very close to the physical properties of the cell’s center.
Averaging the likelihood over the entire model cell helps
prevent this problem.
Figure 4 shows how the stellar parameters are constrained

differently in different stellar phases. The top row shows an
RGB star with a mildly constrained age and very well
constrained metallicity. The middle row shows a turnoff star
for which the likelihood is very narrow in all directions.
Finally, in the bottom row we show a main-sequence star, for
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which mass and metallicity are constrained moderately well,
but for which age is almost completely unconstrained, at least
within the range of ages adopted here.

5. SOLVING FOR THE INTENSITY FUNCTION

As detailed in Section 2.3, the problem of solving for λ can
be regarded as solving for the IMF slope (γ) and the number
of stars formed in each age–metallicity bin, n{ }ia z, . Equa-
tion (11) describes the posterior pdf from which we wish to
sample in order to obtain a solution. The general shape of
SFHs in the age–metallicity plane is expected a priori to be
sparse. This means that only a limited number of cells have
an occupancy n{ }ia z,

greater than 0. In actual stellar fields, for

example, the existence of an age–metallicity relation (AMR)
will greatly reduce the number of active model cells. There
are existing techniques, developed for image reconstruction,
that allow one to deal with situations in which only a few
pixels of the image contain the desired information while the
rest of the pixels constitute a noisy background. These
techniques allow one to suppress the background and sharpen
the signal in the pixels where it is present. To improve our
solution, we adopt an approach similar to that described in
Lingenfelter et al. (2009) and designed for Poisson-
distributed data. This approach is equivalent to imposing a
Lomax, or Pareto Type II, distribution as the prior (see
Equation (11)) on the pixel intensities nia z,

. The product of all

Figure 2. CMDs of our model grids, color coded by incompleteness values. Red corresponds to 100% complete models, blue to 0%. The first two rows show the effect
of incompleteness due to missing detections when no a posteriori cut is applied to the photometric catalogs (top row) or when a cut at M814 = 9 mag is applied (center
row). The bottom row shows the contribution to incompleteness from stellar evolution. Red corresponds to model cells that are not evolved away from the main
sequence; bluer colors correspond to cells where some fraction of the models is not observable, having evolved away from the main sequence.
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of the cells’ priors is proportional to

n
1 . (17)
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In the language of regularization, β sets the threshold, or
minimum value that is considered to be an actual, rather than
spurious, signal, and δ sets the threshold’s sharpness, or
strength with which values below the threshold are drawn
toward zero. After experimenting, we adopted 2d = and

0.4b = , meaning a soft threshold, and meaning that we
regularize (put to 0) only (a,z) model cells with very low
occupancy. At this value of β, the Lomax distribution is

improper, i.e., integrates to infinity. Because the likelihood
function of a PPP decays exponentially at high values of λ, the
posterior pdf is still proper.
For the IMF slope γ, we assume a uniform prior bounded

between −3 and +3. This range includes all of the commonly
assumed high-mass IMF slopes.
Given the high dimensionality of this problem (D = 776

with the grid used here), sampling the whole space of
n( , { })ia z,g can be inefficient, implying slow convergence

when using traditional MCMC sampling methods. In order to
accelerate convergence, we first estimate the maximum-
a posteriori (MAP) solution for n( , { })ia z,l using an expecta-
tion–maximization algorithm (EMA; see Appendix A). We

Figure 3. Illustration of our likelihood calculation method based on averages over the cells. The blue points represent 500 model realizations within cells centered on
M M M0.59 (left), and 0.92=  , (right). Both model cells are centered on a = 12.05 Gyr and [Fe/H] = −0.3 dex. The black points are simulated measurements from
one of our artificial catalogs (BLG, see Section 6). The pink points are data that are within 5σ from at least one of the 500 realizations (where σ is the uncertainty
associated to each model realization, according to the curves of Figure 1). The shade goes from high (light pink) to low likelihood (dark pink). The error symbols
correspond to the models with parameters in the center of the grid cells, and their size is equal to the typical σ of that cell.

Figure 4. Examples of likelihoods for stars in different evolutionary phases: RGB (top row), turnoff (middle row), and main sequence (bottom row). The left panels
show the stellar location in the CMD. The other 3 panels show the likelihoods as functions of different pairs of variables, marginalized over the third. The orange
circles indicate the observed magnitudes (left column) and the true mass, age, and metallicty values (columns 2–4).

9

The Astrophysical Journal, 808:45 (20pp), 2015 July 20 Gennaro et al.



then start from the MAP estimate and use Metropolis–Hastings
(M–H) MCMC to generate samples from the posterior pdf. M–

H MCMC performs adequately and has the additional merit of
being simple and intuitive.

6. SIMULATED CATALOGS

To test our method, we simulate catalogs with a range of
SFHs and AMRs. We explore the impact of increased noise
levels in the data and the impact of different magnitude cuts
applied to the catalogs. We also show how results differ when
the metallicity-sensitive band F390W is removed from the
analysis.

For each catalog, we define a shape for
m a z m a z( , , ) ( ) ( , )l µ F . We also specify the true number

of expected stars (Ntrue), equivalent to specifying the integral of
λ. The actual number of stars formed (Nborn) is extracted from a
Poisson distribution with expected value equal to Ntrue. Given
the IMF single power-law parametrization, we need only
specify the slope parameter; we set 2g = - for all the
simulated catalogs. The function a z( , )F represents the AMR
for all the stars that are formed. We generate catalogs with
isolated narrow bursts of star formation, as well as more
extended SFHs, with large changes of stellar metallicity with
age. Table 1 summarizes the characteristics of each catalog.

Each star’s m a z( , , ) values are extracted from m( ) and
a z( , )F . Given the finite lifetime of stars, not all of the

extracted values correspond to observable stars. Stars that are
too massive for the extracted age and metallicity are still
considered for the budget of formed stars but they obviously do
not end up in the observable catalog. If instead the extracted
age does not exceed the maximum lifetime at given m and z,
stellar models are used to compute the intrinsic stellar
magnitudes. We then use our noise model to assign each star
a set of measurable magnitudes, and include or exclude the star
from the final catalog based on the incompleteness curves in
Figure 1. For some of the catalogs, we use a version of the error
curves in Figure 1 where the whole curve is multiplied by a
factor ( ferr) equal to 2.5, in order to explore the effects of
reduced data quality. The completeness curves are also
recomputed accordingly. Figure 5 shows the extracted para-
meters for catalog BLG. The histograms represent all of the
formed stars (light blue) with the subset of observed stars
superimposed (dark blue). The contour plot shows the form of

a z( , )F chosen for this catalog. The three panels in the bottom
row of Figure 5 show the CMDs for the same catalog.
Analogous plots for the other catalogs are shown in Figures 12,
13, and 14 in Appendix B.

7. RESULTS

We use the outputs of the MCMC runs, Section 5, to define
our estimates of the parameters and their uncertainties. The
results are summarized in Figures 6–11. In all the panels,
different shades of blue represent the recovered solutions, while
the original values are in orange.
For the 2D SFH (left, bottom), we show the MAP solution

as a way to represent the best combination of n{ }ia z, values.
Defining the uncertainty interval for the recovered solution in
the age-metallicty plane is not straightforward. While we have
samples for the n{ }ia z, , it is the global solution for the whole
(a, z) plane, and its uncertainty, that is of interest. Adjacent
cells in the (a, z) grid are strongly coupled by the fact that most
of the individual stellar likelihoods are spread over large age–
metallicity regions. This means that the pdf for the n{ }ia z, has a
complex covariance structure, which is hard to represent and
convey in a meaningful way. Instead, we show the uncertain-
ties of different collapsed one-dimensional versions of nia z,

. We
plot the marginal age (left, top) and marginal metallicity
(center, bottom) distributions, as well as the cumulative SFH
(CSFH) (right, bottom) and the mean AMR (right, top).
For the first three of these collapsed distributions, we use the

geometric medians as our best estimates. The geometric median
is a commonly used central tendency indicator; it is the
multidimensional generalization of the common median. In this
case, we want to identify a median marginal SFH, or MDF, or
CSFH, and each grid point where such distributions are
computed constitutes a dimension. We treat the marginal pdf,
for one MCMC iteration, as a point in an mgrid-dimensional
space, where mgrid is the number of grid points along the age or
metallicity direction. When considering all the MCMC
iterations, the geometric median is the point in the mgrid

-dimensional space that minimizes the sum of the (Euclidean)
distances to all the other points. To quantify the uncertainty on
the marginal distributions, we consider each bin individually.
We take the difference between the bin value of the geometric
median and the bin value of the distributions for each MCMC
iteration. We then sort the differences and take the 16% (84%)

Table 1
Main Characteristics of the Simulated Catalogs

Name γa a z( , )F b Ntrue Nborn Nobs ferr
c

AMRs d

BLG −2 Bulge-like SFH and MDF 25,000 25,256 9921 1 0.05
BLG:NO390 −2 Same as BLG, no F390W data 25,000 24,910 18,480 1 0.05
BLG:F2P5 −2 Same as BLG, larger error 25,000 25,123 6264 2.5 0.05
BLG:LRG −2 Same as BLG, more stars 100,000 100,138 39,246 1 0.05
BURST3 −2 Three equal-intensity bursts 25,000 25,002 10,256 1 0.
EXP −2 Exponential decay 25,000 25,237 12,298 1 0.
CONST −2 Constant star formation 25,000 25,404 11,624 1 0.

Note. The BLG catalogs have SFH and MDF that emulate observations of the Galactic Bulge. The BURST3 catalog has burst at a z( , ) = (12.5, −1.0); (8.5, −0.3); (8.5,
−1.0). In both the EXP and CONST catalog there is a linear age–metallicity relation with a [10, 12]Î Gyr and z [ 1.5, 0.5]Î - - (see also Figures 13 and 14). The
exponential decay is such that within the overall time interval, the star formation decays by 3 e-folds.
a IMF slope.
b Combination of star formation history and age–metallicity relation.
c Multiplication factor for the error curves with respect to the standard curve of Figure 1.
d Dispersion about the mean age–metallicity relation.
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Figure 5. Generated parameters (top) and simulated photometry (bottom) for the BLG catalog. The contour plot shows the form of a z( , )F . The three histograms show
the mass, age and metallicity distribution for the whole simulated population (light blue) and the stars that make it to the simulated, observed catalog (dark blue). The
latter are shown in three different CMD combinations in the bottom panels.

Figure 6. Recovered properties for catalog BLG. Left, bottom: the maximum a posteriori solution for n{ }ia z, . Left, top: star formation history. Center, bottom:
metallicity distribution function. Center, top: distribution of the IMF slope values from the MCMC runs. Right, bottom: cumulative star formation history. Right, top:
mean age–metallicity relation and its dispersion. In all panels the simulated values are in orange, the recovered ones in shades of blue.
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quantiles; these quantiles are analogous to the typical 1 s-
interval in case of a Gaussian distribution.

We define the mean AMR as the mean value of the
metallicity of stars formed within one age grid cell. The AMR
can have an intrinsic dispersion (as in the case of all the BLG-
type catalogs), meaning that at fixed age, a star can be formed
with a range of metallicities, as in the case of non-instantaneous
mixing of the ISM. Given the possible intrinsic dispersion, in
the summary plots we only show the comparison between the
simulated AMR and the MAP solution. To avoid confusion, we
do not show the additional dispersion introduced in the solution
by the fact that each MCMC sample can have a slightly
different mean AMR. It is worth noting that in most cases the
AMR solutions in the top-right panels depart significantly from

the input AMR (orange points). At a closer look, however, it is
clear that the departure is limited to metallicities where the 2D
solutions are generally negligible. For these metallicities the
input AMR is not defined (no stars are formed in the input
model), but the output mean AMR can still be computed.
When looking simultaneously at the AMR and 2D solution, it
is clear that the recovered AMR could be, in fact, truncated to
metallicities where the 2D solution is significant. However, we
show the full derived AMR for the sake of completeness.
Finally, the IMF slope panel (center, top) shows the input

value of (orange) and posterior pdf for the IMF slope γ.
Figure 6 shows the results for catalog BLG. The distribution

of the recovered IMF slope is centered on the true value, and
the marginal SFH and MDF match the input. Some deviation is

Figure 7. Recovered properties for catalog BLG, with cut at M 7814 = mag (top), M 9814 = (center), and catalog BLG:F2P5, cut at M 9814 = mag (bottom). See
Figure 6 for a description of the individual panels.
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observed at old ages for the SFH, CSFH, and AMR, most likely
because few stars formed at these ages and even fewer were
observed. Moreover, the stars are formed at low metallicity; the
isochrone colors become increasingly degenerate at low
metallicities, leading to individual stellar likelihoods that are
less well-defined, and looser AMR constraints.

7.1. Catalog Cuts and Photometric Errors

In the case of Figure 6 we have used all of the observed stars
of catalog BLG to reconstruct the intensity function. However,
as anticipated in Section 4.1, there might be cases in which it is
desirable to adopt conservative cuts, avoiding stars at the faint
limit. As illustrated in Section 4.1, these hard cuts can be
accounted for in the incompleteness function since they are
simply another aspect of the detection process. We show in
Figure 7 the effect of cuts at M 7814 = (top) and 9 (center)
mag, respectively. The M 9814 = mag cut corresponds approxi-
mately to a cut at the 50% completeness limit (see Figure 2).

Such cuts affect different aspects of the solution in different
ways. Generally speaking, the shape of the SFH, MDF, and
AMR are not significantly changed. This is to be expected,
since both of the applied cuts leave the turnoff and RGB intact.
The turnoff carries most of the age information, while the RGB
is a good metallicity indicator. The cuts have some effect on the
details of the SFH and MDF, especially in poorly populated
parts of the (a, z) plane and where there are few, if any, turnoff
or RGB stars. The largest difference is in the IMF estimates.
The reduced mass range implies that the IMF slope cannot be
recovered with the same accuracy and precision. This in turn

affects the overall normalization of the SFH, as evident in the
CSFH plot in the M814 = 7 mag cut case. It is encouraging that
the M814 = 9 mag cut case still looks very good, in all respects.
Although the precision of the γ recovery is lower than in the
full catalog case, there is no obvious bias (in contrast to the
M814 = 7 mag cut case).
In an ideal situation, where one has perfect knowledge of the

completeness and photometric errors at all magnitudes, it
would be best to analyze the full catalog. With real data, one
must be careful using stars near the faint limit, because the
effects of any biases in the characterization of the completeness
or photometric uncertainties will be amplified. Fortunately, a
conservative cut to the catalog at the 50% completeness limit,
with proper inclusion of this cut in the selection function, can
yield results that compare well to those from the full catalog.
For the rest of the examples, we will be mostly using catalogs
with a M 9814 = cut.
The bottom panel of Figure 7 shows the results for catalog

BLG:F2P5, simulated with the same IMF, SFH, and MDF as
catalog BLG, but with photometric errors increased by a factor
of 2.5; we limit the comparison to the case with M814 = 9 mag
cut. The overall recovery in this case is similar to the BLG case.
In particular, the IMF recovery looks very similar. This is
because individual stellar masses are still very well recovered,
at M 9814 < , because our mass grid spacing (2%) is coarse
enough that the BLG and BLG:F2P5 cases are almost
indistinguishable. Similarly, the marginal (and cumulative)
SFH and MDF are also well recovered. However, the details of
the AMR start to get worse for the age bins with fewer stars;
with the larger uncertainties, the information content of the few

Figure 8. Recovered properties for catalog BLG:NO390 (top) and catalog BLG:LRG (bottom), both cut at M 9814 = mag. See Figure 6 for a description of the individual
panels.
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stars that were generated in those bins is no longer sufficiently
constraining. This example demonstrates the need, in real
cases, to understand the limitations of the available data set.

7.2. Impact of Nbands and Nobs

Catalog BLG:NO390 has been simulated using the same IMF,
SFH, and AMR as catalog BLG, but in this case we have
changed the mock observing strategy to only consider two
filters, omitting F390W. This choice enables deeper catalogs
(see the number of stars in Table 1) at the cost of having
weaker metallicity constraints. In our simulations, F390W is
the shallowest band and has the worst signal-to-noise ratio.
This is a common choice when designing an observing
strategy: more filters and a shallower catalog versus deeper
observations and less chromatic information. The top panel of
Figure 8 demonstrates that the deep observations guarantee a
good result for the IMF slope, and hence the normalization of
the SFH. The mean AMR, SFR, and MDF match the input to
within the uncertainties. However, the MDF itself is highly
uncertain in this observing configuration, as expected.

The bottom panel of the same figure shows the results for
catalog BLG:LRG, whose a z( , )F is equal to four times that of
BLG; this corresponds to observing the same population over an
area four times larger. The recovery of all quantities is nearly
optimal.

7.3. Differentiating Similar Histories

In some real cases it might be very important to be able to
distinguish between apparently similar star formation

scenarios. Catalogs EXP and CONST have been designed to test
the ability of our method to differentiate such cases. The
catalogs have the same IMF, AMR, photometric errors, and
selection criteria, but the star formation rate is exponentially
decaying in one case and constant in the second. The total
number of stars formed and the duration of star formation are
also the same. The scenarios’ CMDs, which are shown in
Figures 13 and 14, appear quite similar.
The results for the recovery are shown in Figure 9, for the

cases in which both catalogs are cut at M814 = 9 mag. The
recovery is again largely successful, with a clear distinction
between the two scenarios. The differences are clearest in the
CSFH plot.

7.4. Nuisance Parameters: the Effect of a Distance Distribution

As was explained at the end of Section 2.3, our model can
incorporate NPs at the cost of increased computational time.
We have tested the effects of introducing NPs by simulating
catalogs with the same m( ) and a z( , )F as those in Table 1,
but with a distribution in DM. In particular, we will show
results for the BURST3 catalog case, where three isolated peaks
of star formation were simulated. This catalog provides a good
visualization for the effects of a distance spread. With respect
to the original catalog, the one including a distance distribution
has been spread using a Gaussian distribution in DM with
expected value 0 and DMs = 0.25 mag. This dispersion is
similar to the spread in DM of stars along Galactic bulge
sightlines.
As outlined at the end of Section 2.3, when dealing with NPs

both the incompleteness and likelihood function have to be

Figure 9. Recovered properties for catalog EXP (top) and catalog CONST (bottom), both cut at M 9814 = mag. See Figure 6 for a description of the individual panels.
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computed as a function of the NPs too. A prior must then be
specified in order to marginalize over them.

In Figure 10, we show results where distinct priors are
assumed for the distance distribution (one correct and two

incorrect). Specifically, the results in the three panels are
obtained under the following assumptions: a Gaussian prior
with expected value 0 and DMs = 0.25 mag (second from the
top; the correct prior), a uniform prior with 0 mean and 0.25

Figure 10. Recovered properties for catalog BURST3. Top: the case without distance spread. Second from the top: the correct distance distribution is used as distance
prior in the recovery. Second from the bottom: a uniform distance prior between −1 and 1s+ is used instead of the correct (Gaussian) one. Bottom: all the stars are
considered to be a priori at the same distance, equal to the mean of the correct Gaussian prior. In all cases we adopted a catalog cut at M814 = 9 mag. See Figure 6 for a
description of the individual panels.
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Figure 11. Results for catalogs BLG (top two panels) and BLG:NO390 (bottom two panels) with a Gaussian DM distribution. The first and third panels from the top
show the results for the basic recovery. The second and fourth panels from the top show the results when a spectroscopic constraint on the MDF is applied. See
Figure 6 for a description of the individual panels.
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mag width (second from the bottom; an incorrect prior that is
still a reasonable approximation), and a single distance
centered on 0 (bottom; an incorrect prior that is a less
reasonable approximation). For comparison, we also show the
recovery in the case where all the stars are simulated at the
same distance (top).

With a spread in distance, the degradation in the recovered
IMF, AMR, SFH, and MDF is quite obvious. Even in the case of
the correct prior, the fact that the real distances of individual stars
are known only with some probability makes both the individual
ages and metallicities more uncertain. Essentially, all of the
distributions have been convolved with the corresponding
distance uncertainty. However, at least in the case with a correct
distance prior (second from the top), the recovered values match
the input to within uncertainties. In contrast, incorrect assumptions
on the distance prior further increase the discrepancies between
the truth and the result. In particular, assuming that all the stars are
at the same distance makes all the answers for AMR, SFH, and
MDF completely wrong while the IMF slope is less affected.

These examples constitute a serious warning against over-
simplifying assumptions when it comes to priors. In the case of
the Galactic bulge, it is certainly true that the DM dispersion is
non-negligible, and so particular care should be taken regarding
the assumed DM distribution.

7.5. Applying Spectroscopic Constraints

Often, in the study of resolved stellar populations, there are
additional constraints that can be useful when solving for their
IMF, SFH, and MDF. Spectroscopic constraints, usually from
RGB stars, can improve the solution if they are appropriately
handled. As is the case for photometric incompleteness, it is
very important to have a good knowledge of the selection
function that is used to build the sample of targets for the
spectroscopic observations.

A catalog of spectroscopic measurements and errors can be
added to the catalog of photometric measurements to further
constrain the intensity function (λ). Technically, the spectro-
scopic data constitute a new, related PPP, in the spectroscopic
measurement space, with the same (up to normalization)
underlying true intensity as the one underlying the photometric
measurements PPP. The probability of the combined spectro-
scopic and photometric PPPs is the product of the probabilities
of each one:

( )
( ) ( )

{ } { }
{ } { }

p

p N p

,

, ,

spec phot

spec spec phot

h h l

h l h l= ´

where Nspec is the (possibly different) normalization of the
spectroscopic PPP.

The selection function for the spectroscopic sample can be
regarded in the same way as the incompleteness function of
photometric data and computed with the same methods described
in Section 4.1. Once this function is evaluated, we can write an
equivalent of Equation (13) for the spectroscopic PPP.

We simulate the process of building a spectroscopic sample
and obtaining corresponding measurements by first generating
a photometric catalog with the same true properties as the BLG

catalog, but a larger total number of stars—as noted above, the
normalizations of the spectroscopic and photometric PPPs do
not have to be same. We then select RGB stars with

M2 3814< < mag. This is analogous to selecting targets from

a shallow wide-area survey centered on a similar position as the
field where deep imaging is available for IMF, SFH, and MDF
reconstruction. We then assign to each spectroscopic target an
[Fe/H] error, extracted from a gamma distribution with shape
parameter 50 and scale parameter 0.001, thus obtaining a mean
error of 0.05 dex, and a standard deviation of the errors 0.007
dex. Finally, for each star we extract the measured [Fe/H] from a
Gaussian centered on its true [Fe/H] value with σ equal to the
assigned error. In the recovery, the individual likelihoods are
independent of mass and age, as they only depend on [Fe/H]; the
likelihoods are Gaussians centered on the observed metallicity
with σ given by the individual [Fe/H] measurement errors. Here
and in real data sets, the impact on computing resources is small,
because the number of stars in the spectroscopic sample is much
lower (generally only a few hundreds) than the photometric
sample, and all the terms needed to compute the equivalent of
Equation (13) for the spectroscopic PPP are already calculated
when solving for the photometric PPP.
To demonstrate the effects of a spectroscopic constraint, we

show the cases of catalogs BLG and BLG:NO390; the former is
used as template, while the latter does not contain measure-
ments for the metallicity-sensitive F390W filter. We put
ourselves in the situation where the catalog is generated with
a Gaussian DM distribution, with 0 mean and 0.25s = mag,
and we use the correct prior to marginalize over distance. The
results are shown in Figure 11. In the first and third panels from
the bottom, we show the results obtained without imposing a
spectroscopic constraint, while in the second and fourth panels
from the top the constraint is used. The results that include
spectroscopy are more accurate and precise than the results that
do not, though they are still not as good as the corresponding
cases without a distance spread; this outcome is not surprising,
given the examples of catalog BURST3 that explored in
Section 7.4. The improvement is more noticeable for catalog
BLG:NO390 (third and fourth panels from the top) than for
catalog BLG (first and second panels from the top), since the
latter includes the metallicity-sensitive F390W band.

8. SUMMARY

We have introduced a new approach to the study of resolved
stellar populations via multi-band photometric observations.
The outlined framework is based on PPP theory. We solve the
problem using standard MCMC techniques, combined with
techniques developed for medical imaging reconstruction, such
as sparsity regularization for Poisson data.
The underlying idea driving this work was the need to

simultaneously solve for the IMF slope, SFH, and MDF for
nearby environments such as the Galactic bulge and the Milky
Way satellites. We have developed a framework that allows
easy inclusion of NPs, such as stellar distance, and demon-
strated the importance of specifying informative priors for these
NPs. We have shown how to robustly incorporate measurement
errors, incompleteness, and selection functions within the PPP
framework. Our approach is particularly useful when multi-
band data are available; in this case methods based on CMD
gridding can be less straightforward to apply. Another
advantage of our approach is the ease with which we can
incorporate certain types of additional observations, such as
those coming from independent spectroscopic observations.
We have validated our method by simulating catalogs with

different underlying SBFs (number of stars formed per unit
mass, age, and metallicity) and showing how well we can
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recover the input values. We have tested the outcomes under
different assumptions on the photometric errors, catalog size,
selection function, available photometric bands, and accuracy
of prior assumptions on the NPs. These tests demonstrate that
our technique recovers the input parameters without significant
biases, limited only by the uncertainties in the data.

APPENDIX A
THE EXPECTATION–MAXIMIZATION ALGORITHM

The EMA is a general iterative algorithm for finding the
maximum-likelihood, or in our case MAP, parameters of a pdf
when a direct solution is non-trivial. There are many
applications of the EMA; we refer the reader to Dempster
et al. (1977), McLachlan & Krishnan (2008), and Streit (2010)
for further details. We summarize, without derivation, the EMA
steps for PPPs on a discrete space (our grid of models).

Consider a set of t j M, 1 ...j = measurements (stellar
magnitudes) and a piece-wise constant PPP, i.e.,

s I s( ) ( )
r
K

r r1ål l= = , where K is the number of grid cells,
and Ir is 1 across the rth cell and 0 elsewhere. The likelihood of

the data, given λ, is:

( )p t e f t({ } ) , (18)
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( )f t p t s I s ds I s ds( ) ( ) and ( ) .r j r r rò ò= =
The idea of the EMA is to introduce a number of latent

variables, usually referred to as missing data. In this case the
missing data are the true values of the stellar parameters, which
we indicate with u. The joint probability of data and latent
variables is given by:

( )( )p t u e f t p({ }, { }, ) ( ).
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Figure 12. Same as Figure 5 but for the BURST3 catalog.
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Combining Equations (18) and (19) it is possible to derive
the expression for the probability of the latent variables
conditional on the data and λ:

( )
( )

p u t
p u t

p t

f t

f t
({ } { }, )

({ }, { } )

({ } )
.

(20)

j

M u u j

r
K

r r j1 1

j j


å

l
l

l

l

l
= =

= =

The E-step consists of taking the logarithm of the joint
probability, Equation (19), and calculating its expectation
value over the conditional, Equation (20). The M-step consists
of maximizing the expression obtained in the E-step. Without
showing it, we note that the M-step requirements lead to an
iterative scheme for computing rl until a given convergence
tolerance is reached, e.g., until the difference between the log-
likelihood at step n and n 1+ is below a fixed threshold. This
algorithm falls in the class of Shepp–Vardi algorithms (Shepp
& Vardi 1982). Further modifications to the EMA are

necessary when including the sparsity regularization penalty
logarithmic function. We will not illustrate those modifications
here and refer the reader to Lingenfelter et al. (2009), where the
recursive updates for the EMA are derived for this particu-
lar case.

APPENDIX B
CATALOG FIGURES

This section contains figures that represent the simulations
for catalogs BURST3 (Figure 12), EXP (Figure 13), and CONST

(Figure 14). In each figure the generated parameters of the
corresponding catalog are shown in the top panels and the
simulated photometry in the bottom ones. In the top panels, the
contour plot shows the form of Φ(a, z) while the three
histograms show the mass, age, and metallicity distribution for
the whole simulated population (light blue) and the stars that
make it to the simulated, observed catalog (dark blue). The
latter are shown in three different CMD combinations in the
bottom panels.

Figure 13. Same as Figure 5 but for the EXP catalog.

19

The Astrophysical Journal, 808:45 (20pp), 2015 July 20 Gennaro et al.



REFERENCES

Aparicio, A., & Hidalgo, S. L. 2009, AJ, 138, 558
Brown, T. M., Sahu, K., Anderson, J., et al. 2010, ApJL, 725, L19
Brown, T. M., Sahu, K., Zoccali, M., et al. 2009, AJ, 137, 3172
Cignoni, M., Degl’Innocenti, S., Prada Moroni, P. G., & Shore, S. N. 2006,

A&A, 459, 783
Da Rio, N., Gouliermis, D. A., & Gennaro, M. 2010, ApJ, 723, 166
Dempster, A. P., Laird, N. M., & Rubin, D. B. 1977, Journal of the Royal

Statistical Society, Series B, 39, 1
Dolphin, A. E. 2002, MNRAS, 332, 91
Foreman-Mackey, D., Hogg, D. W., & Morton, T. D. 2014, ApJ, 795, 64
Gennaro, M., Brandner, W., Stolte, A., & Henning, T. 2011, MNRAS,

412, 2469
Gustafsson, B., Edvardsson, B., Eriksson, K., et al. 2008, A&A, 486, 951
Harris, J., & Zaritsky, D. 2001, ApJS, 136, 25
Hernandez, X., Valls-Gabaud, D., & Gilmore, G. 1999, MNRAS, 304, 705
Hodge, P. 1989, ARA&A, 27, 139
Hugeback, A., Coram, M. A., & Jester, S. 2007, in ASP Conf. Ser. 370,

Statistical Challenges in Modern Astronomy IV, ed. G. J. Babu, &
E. D. Feigelson (San Francisco, CA: ASP), 417

Jørgensen, B. R., & Lindegren, L. 2005, A&A, 436, 127

Lingenfelter, D. J., Fessler, J. A., & He, Z. 2009, Proc. SPIE, 7246,
72460F

Lombardi, M., Lada, C. J., & Alves, J. 2013, A&A, 559, A90
McLachlan, G., & Krishnan, T. 2008, The EM Algorithm and Extensions (2nd

ed.; New York: Wiley)
Naylor, T., & Jeffries, R. D. 2006, MNRAS, 373, 1251
Ng, Y. K., Brogt, E., Chiosi, C., & Bertelli, G. 2002, A&A, 392, 1129
Shepp, L. A., & Vardi, Y. 1982, IEEE Trans. Med. Imaging, 1, 113
Stetson, P. B. 1987, PASP, 99, 191
Streit, R. L. 2010, Poisson Point Processes (Berlin: Springer)
Tabachnik, S., & Tremaine, S. 2002, MNRAS, 335, 151
Tolstoy, E., Hill, V., & Tosi, M. 2009, ARA&A, 47, 371
Tolstoy, E., & Saha, A. 1996, ApJ, 462, 672
VandenBerg, D. A., Bergbusch, P. A., Dotter, A., et al. 2012, ApJ, 755, 15
VandenBerg, D. A., Bergbusch, P. A., Ferguson, J. W., & Edvardsson, B.

2014, ApJ, 794, 72
Vergely, J.-L., Köppen, J., Egret, D., & Bienaymé, O. 2002, A&A, 390,

917
Walmswell, J. J., Eldridge, J. J., Brewer, B. J., & Tout, C. A. 2013, MNRAS,

435, 2171
Weisz, D. R., Fouesneau, M., Hogg, D. W., et al. 2013, ApJ, 762, 123
Youdin, A. N. 2011, ApJ, 742, 38

Figure 14. Same as Figure 5 but for the CONST catalog.

20

The Astrophysical Journal, 808:45 (20pp), 2015 July 20 Gennaro et al.

http://dx.doi.org/10.1088/0004-6256/138/2/558
http://adsabs.harvard.edu/abs/2009AJ....138..558A
http://dx.doi.org/10.1088/2041-8205/725/1/L19
http://adsabs.harvard.edu/abs/2010ApJ...725L..19B
http://dx.doi.org/10.1088/0004-6256/137/2/3172
http://adsabs.harvard.edu/abs/2009AJ....137.3172B
http://dx.doi.org/10.1051/0004-6361:20065645
http://adsabs.harvard.edu/abs/2006A&amp;A...459..783C
http://dx.doi.org/10.1088/0004-637X/723/1/166
http://adsabs.harvard.edu/abs/2010ApJ...723..166D
http://dx.doi.org/10.1046/j.1365-8711.2002.05271.x
http://adsabs.harvard.edu/abs/2002MNRAS.332...91D
http://dx.doi.org/10.1088/0004-637X/795/1/64
http://adsabs.harvard.edu/abs/2014ApJ...795...64F
http://dx.doi.org/10.1111/j.1365-2966.2010.18068.x
http://adsabs.harvard.edu/abs/2011MNRAS.412.2469G
http://adsabs.harvard.edu/abs/2011MNRAS.412.2469G
http://dx.doi.org/10.1051/0004-6361:200809724
http://adsabs.harvard.edu/abs/2008A&amp;A...486..951G
http://dx.doi.org/10.1086/321792
http://adsabs.harvard.edu/abs/2001ApJS..136...25H
http://dx.doi.org/10.1046/j.1365-8711.1999.02102.x
http://adsabs.harvard.edu/abs/1999MNRAS.304..705H
http://dx.doi.org/10.1146/annurev.aa.27.090189.001035
http://adsabs.harvard.edu/abs/1989ARA&amp;A..27..139H
http://adsabs.harvard.edu/abs/2007ASPC..371..417H
http://dx.doi.org/10.1051/0004-6361:20042185
http://adsabs.harvard.edu/abs/2005A&amp;A...436..127J
http://dx.doi.org/10.1117/12.816961
http://adsabs.harvard.edu/abs/2009SPIE.7246E..0FL
http://adsabs.harvard.edu/abs/2009SPIE.7246E..0FL
http://dx.doi.org/10.1051/0004-6361/201321827
http://adsabs.harvard.edu/abs/2013A&amp;A...559A..90L
http://dx.doi.org/10.1111/j.1365-2966.2006.11099.x
http://adsabs.harvard.edu/abs/2006MNRAS.373.1251N
http://dx.doi.org/10.1051/0004-6361:20020760
http://adsabs.harvard.edu/abs/2002A&amp;A...392.1129N
http://dx.doi.org/10.1109/TMI.1982.4307558
http://adsabs.harvard.edu/abs/ 1982ITMI....1..113S 
http://dx.doi.org/10.1086/131977
http://adsabs.harvard.edu/abs/1987PASP...99..191S
http://dx.doi.org/10.1046/j.1365-8711.2002.05610.x
http://adsabs.harvard.edu/abs/2002MNRAS.335..151T
http://dx.doi.org/10.1146/annurev-astro-082708-101650
http://adsabs.harvard.edu/abs/2009ARA&amp;A..47..371T
http://dx.doi.org/10.1086/177181
http://adsabs.harvard.edu/abs/1996ApJ...462..672T
http://dx.doi.org/10.1088/0004-637X/755/1/15
http://adsabs.harvard.edu/abs/2012ApJ...755...15V
http://dx.doi.org/10.1088/0004-637X/794/1/72
http://adsabs.harvard.edu/abs/2014ApJ...794...72V
http://dx.doi.org/10.1051/0004-6361:20020334
http://adsabs.harvard.edu/abs/2002A&amp;A...390..917V
http://adsabs.harvard.edu/abs/2002A&amp;A...390..917V
http://dx.doi.org/10.1093/mnras/stt1444
http://adsabs.harvard.edu/abs/2013MNRAS.435.2171W
http://adsabs.harvard.edu/abs/2013MNRAS.435.2171W
http://dx.doi.org/10.1088/0004-637X/762/2/123
http://adsabs.harvard.edu/abs/2013ApJ...762..123W
http://dx.doi.org/10.1088/0004-637X/742/1/38
http://adsabs.harvard.edu/abs/2011ApJ...742...83Y

	1. INTRODUCTION
	2. POISSON POINT PROCESSES
	2.1. Measurement Process and Errors
	2.2. Incompleteness
	2.3. Recap: PPPs for Noisy, Incomplete Photometric Data and a Discrete Parameter Space

	3. THE MODEL GRID
	4. NOISE, INCOMPLETENESS, AND LIKELIHOODS
	4.1. Computing &#x003B1;(m,a,z)
	4.2. Individual Stellar Likelihoods

	5. SOLVING FOR THE INTENSITY FUNCTION
	6. SIMULATED CATALOGS
	7. RESULTS
	7.1. Catalog Cuts and Photometric Errors
	7.2. Impact of Nbands and Nobs
	7.3. Differentiating Similar Histories
	7.4. Nuisance Parameters: the Effect of a Distance Distribution
	7.5. Applying Spectroscopic Constraints

	8. SUMMARY
	APPENDIX ATHE EXPECTATION-MAXIMIZATION ALGORITHM
	APPENDIX BCATALOG FIGURES
	REFERENCES



