21 research outputs found

    Comportement thermique des géopolymères obtenus à partir d'une argile kaolinite

    Get PDF
    The aim of this work is to study the thermal behavior of geopolymers derived from kaolinite (clay). The geopolymers were characterized by various technics: Thermal analysis (DTA, TGA and dilatometer), X-ray diffractography (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Certain physical properties of the products were equally determined: linear shrinkage of curing, percentage of water absorption and compressive strength. The results obtained after drying and thermal treatment showed that the products preserved their initial forms, but showed variable colours based on the temperatures they were treated at. The products obtained at 90, 300 and 500 °C contained hydroxysodalite. The synthesis of geopolymers is not complete at 300 °C (presence of kaolinite in the material) but the products obtained are quite consolidated. The geopolymers obtained have weak values of linear shrinkage of curing (less than 0.6 %) and the compressive strength increases from room temperature (4.9 Mpa) up to 400 °C (8.9 MPa) then becomes constant between 400 and 500 °C. The combination of results demonstrates the efficiency of the temperature parameter during the synthesis of geopolymers based on kaolinite. // L’objet de ce travail est l’étude du comportement thermique des géopolymères à base d’une argile kaolinite. Les produits obtenus ont été caractérisés au moyen de plusieurs techniques : analyses thermiques (ATD, ATG et dilatométrie), microscopie électronique à balayage (MEB), analyse par diffraction de rayons X (DRX), analyse infrarouge par transformée de Fourier (IRTF). Certaines propriétés physiques des produits obtenus ont également été déterminées : retrait linéaire de cuisson, pourcentage d’absorption d’eau et résistance à la compression. Les résultats obtenus montrent qu’après le séchage et à la fin du traitement thermique, les éprouvettes des produits conservent leur forme initiale mais présentent une variation de couleur en fonction de la température de traitement. Les produits obtenus à 90, 300 et 500 °C contiennent de l’hydroxysodalite. La réaction de synthèse géopolymère n’est pas encore terminée au moins à 300 °C (présence de kaolinite dans le matériau) mais les produits obtenus sont assez consolidés. Les géopolymères obtenus présentent de faibles valeurs de retrait linéaire de cuisson (inférieure à 0,6 %) et une résistance à la compression qui augmente de la température ambiante (4,9 MPa) jusqu’à 400 °C (8,9 MPa) puis devient constante entre 400 et 500 °C. L’ensemble de ces résultats permet de mettre en exergue l’efficacité du paramètre « température » au cours de la synthèse des géopolymères à base de kaolinite

    Alkali-silica reaction resistance versus susceptibility of geopolymer binders

    No full text
    Alkali–silica reaction (ASR) is a deterioration chemical process that causes expansion along with cracking of cement paste and aggregate particles, resulting in concrete degradation. Numerous factors influence ASR including aggregate reactivity, cement alkali content and moisture availability. Due to the high alkali content of the activator, the risk of ASR could be anticipated to be greater in geopolymer concrete than in Portland cement concrete. This article reviewed the susceptibility or resistance of geopolymer binders to ASR deterioration, based on published data in the literature. Generally, the vulnerability of geopolymer binders to ASR expansion is influenced by two factors comprising, the chemical composition of the aluminosilicate precursor and the alkaline activator solution characteristics. It is evident that low-calcium geopolymer binder systems exhibit very much lower ASR expansion than high-calcium geopolymer binders. Moreover, ASR expansion increases with increase in the alkali (M2O with M = Na, K) concentration of the geopolymer binder mixture and declines as the silicate modulus rises SiO2/M2O. Calcium-rich geopolymer binders have a higher risk that may exhibit ASR attack, owing to the formation of the more expansive sodium-calcium-ASR gel

    Synthesis of geopolymer composites from a mixture of volcanic scoria and metakaolin

    Get PDF
    The aim of this work is to valorize volcanic scoria by using them as starting material for geopolymers production. Nevertheless, volcanic scoria possesses low reactivity. Various amounts of metakaolin (5%, 10%, 15%, 20% and 25%) were added into two volcanic scoria (ZD and ZG) in order to improve their reactivity. Two alkaline solutions were used to activate the aluminosilicate materials. The starting materials were characterized by particle size distribution, specific surface area, chemical and mineralogical composition. The geopolymers were characterized by the setting time, XRD, FTIR, SEM and compressive strength. The results indicated that volcanic scoria have low specific surface area (2.3 m2/g for ZD, 15.7 m2/g for ZG), high average particle size (d50 = 13.08 μm and 10.68 μm for ZD and for ZG respectively) and low glass phase contents. Metakaolin have a smaller average particle size (d50 = 9.95 μm) and high specific surface (20.5 m2/g). The compressive strength of geopolymers increased in the ranges of 23–68 MPa and 39–64 MPa for geopolymers from ZD–MK and ZG–MK respectively. This study shows that despite the low reactivity of volcanic scoria it can still be used to synthesize geopolymers with good physical and mechanical properties
    corecore