6 research outputs found

    Engagement with Higher Education Surface Pattern Design Students as a Catalyst for Circular Economy Action

    Get PDF
    The ‘circular economy’ is seen as an approach by which the issue of sustainability can be addressed whilst broadly maintaining patterns of production, consumption, economic growth, and living standards. If circular economy ambitions are to be achieved, ways and processes of manufacturing need to radically change from the current linear model, and there is the potential for higher education students to act as active participants and catalysts, as explored in this research. The objective of this study is to demonstrate the potential for collaborative learning projects to generate value to all stakeholders and participants, with the definition of value pertinent to each participant’s needs whilst also addressing the principles of circular economy. A case study collaborative learning design project is used to illustrate the positive direct and indirect outcomes and to show how such design projects can form part of a wider drive for transition through innovation towards circular economy ways of working. We consider this research to be at the intersection of circular economy advancement and the integration of effective methods of education for the circular economy in higher education. A cohort of 29 undergraduate surface pattern design students was engaged in a challenge-based design project co-created with an established manufacturing firm. This research shows how such projects provide learning not only for students but also the case study firm and give tangible outputs in terms of new value-generative products. Through an examination of the reflective comments of participants, an outline of key aspects to consider in delivering such projects to ensure greatest impact is identified

    Non-chlorine detergent formulations as an alternative for unpasteurised milk removal from stainless steel surfaces

    Get PDF
    Hygiene is a major concern in the dairy industry, and detergents based on hypochlorite have commonly been utilised for cleaning-in-place (CIP) regimes. However, due to concerns about chlorate residues entering the milk processing chain, new detergent alternatives that are free of chlorate sources are required. Two new formulations were developed based on ethylenediaminetetraacetic acid (EDTA) and wetting agents. Stainless steel surfaces were fouled with milk and cleaned once or 10 times using water, a caustic-EDTA product, a sodium hypochlorite product, an acid, or new cleaning formulations (Product A and Product B). The results demonstrated that the use of acid did not result in successful cleaning. The two new products performed well, with Product B performing equivalently during cleaning compared with the established hypochlorite or caustic-EDTA products. Product A exhibited better cleanliness than the other detergents tested. When allergen removal was considered, residual material was found to be retained on the surfaces, regardless of the cleaning type used. This study suggests that the new product formulations may be used to replace hypochlorite-based detergents to increase the hygienic status of a surface
    corecore