2,787 research outputs found

    Fusion of colour contrasted images for early detection of oesophageal squamous cell dysplasia from endoscopic videos in real time

    Get PDF
    Standard white light (WL) endoscopy often misses precancerous oesophageal changes due to their only subtle differences to the surrounding normal mucosa. While deep learning (DL) based decision support systems benefit to a large extent, they face two challenges, which are limited annotated data sets and insufficient generalisation. This paper aims to fuse a DL system with human perception by exploiting computational enhancement of colour contrast. Instead of employing conventional data augmentation techniques by alternating RGB values of an image, this study employs a human colour appearance model, CIECAM, to enhance the colours of an image. When testing on a frame of endoscopic videos, the developed system firstly generates its contrast-enhanced image, then processes both original and enhanced images one after another to create initial segmentation masks. Finally, fusion takes place on the assembled list of masks obtained from both images to determine the finishing bounding boxes, segments and class labels that are rendered on the original video frame, through the application of non-maxima suppression technique (NMS). This deep learning system is built upon real-time instance segmentation network Yolact. In comparison with the same system without fusion, the sensitivity and specificity for detecting early stage of oesophagus cancer, i.e. low-grade dysplasia (LGD) increased from 75% and 88% to 83% and 97%, respectively. The video processing/play back speed is 33.46 frames per second. The main contribution includes alleviation of data source dependency of existing deep learning systems and the fusion of human perception for data augmentation

    Macroscopic effects of the spectral structure in turbulent flows

    Full text link
    Two aspects of turbulent flows have been the subject of extensive, split research efforts: macroscopic properties, such as the frictional drag experienced by a flow past a wall, and the turbulent spectrum. The turbulent spectrum may be said to represent the fabric of a turbulent state; in practice it is a power law of exponent \alpha (the "spectral exponent") that gives the revolving velocity of a turbulent fluctuation (or "eddy") of size s as a function of s. The link, if any, between macroscopic properties and the turbulent spectrum remains missing. Might it be found by contrasting the frictional drag in flows with differing types of spectra? Here we perform unprecedented measurements of the frictional drag in soap-film flows, where the spectral exponent \alpha = 3 and compare the results with the frictional drag in pipe flows, where the spectral exponent \alpha = 5/3. For moderate values of the Reynolds number Re (a measure of the strength of the turbulence), we find that in soap-film flows the frictional drag scales as Re^{-1/2}, whereas in pipe flows the frictional drag scales as Re^{-1/4} . Each of these scalings may be predicted from the attendant value of \alpha by using a new theory, in which the frictional drag is explicitly linked to the turbulent spectrum. Our work indicates that in turbulence, as in continuous phase transitions, macroscopic properties are governed by the spectral structure of the fluctuations.Comment: 6 pages, 3 figure

    Extracellular Hsp72 concentration relates to a minimum endogenous criteria during acute exercise-heat exposure

    Get PDF
    Extracellular heat-shock protein 72 (eHsp72) concentration increases during exercise-heat stress when conditions elicit physiological strain. Differences in severity of environmental and exercise stimuli have elicited varied response to stress. The present study aimed to quantify the extent of increased eHsp72 with increased exogenous heat stress, and determine related endogenous markers of strain in an exercise-heat model. Ten males cycled for 90 min at 50% O2peak in three conditions (TEMP, 20°C/63% RH; HOT, 30.2°C/51%RH; VHOT, 40.0°C/37%RH). Plasma was analysed for eHsp72 pre, immediately post and 24-h post each trial utilising a commercially available ELISA. Increased eHsp72 concentration was observed post VHOT trial (+172.4%) (P<0.05), but not TEMP (-1.9%) or HOT (+25.7%) conditions. eHsp72 returned to baseline values within 24hrs in all conditions. Changes were observed in rectal temperature (Trec), rate of Trec increase, area under the curve for Trec of 38.5°C and 39.0°C, duration Trec ≄ 38.5°C and ≄ 39.0°C, and change in muscle temperature, between VHOT, and TEMP and HOT, but not between TEMP and HOT. Each condition also elicited significantly increasing physiological strain, described by sweat rate, heart rate, physiological strain index, rating of perceived exertion and thermal sensation. Stepwise multiple regression reported rate of Trec increase and change in Trec to be predictors of increased eHsp72 concentration. Data suggests eHsp72 concentration increases once systemic temperature and sympathetic activity exceeds a minimum endogenous criteria elicited during VHOT conditions and is likely to be modulated by large, rapid changes in core temperature

    Influence of topography on tide propagation and amplification in semi-enclosed basins

    Get PDF
    An idealized model for tide propagation and amplification in semi-enclosed rectangular basins is presented, accounting for depth differences by a combination of longitudinal and lateral topographic steps. The basin geometry is formed by several adjacent compartments of identical width, each having either a uniform depth or two depths separated by a transverse topographic step. The problem is forced by an incoming Kelvin wave at the open end, while allowing waves to radiate outward. The solution in each compartment is written as the superposition of (semi)-analytical wave solutions in an infinite channel, individually satisfying the depth-averaged linear shallow water equations on the f plane, including bottom friction. A collocation technique is employed to satisfy continuity of elevation and flux across the longitudinal topographic steps between the compartments. The model results show that the tidal wave in shallow parts displays slower propagation, enhanced dissipation and amplified amplitudes. This reveals a resonance mechanism, occurring when\ud the length of the shallow end is roughly an odd multiple of the quarter Kelvin wavelength. Alternatively, for sufficiently wide basins, also PoincarĂ© waves may become resonant. A transverse step implies different wavelengths of the incoming and reflected Kelvin wave, leading to increased amplitudes in shallow regions and a shift of amphidromic points in the direction of the deeper part. Including the shallow parts near the basin’s closed end (thus capturing the Kelvin resonance mechanism) is essential to reproduce semi-diurnal and diurnal\ud tide observations in the Gulf of California, the Adriatic Sea and the Persian Gulf

    Fluid dynamics - Turbulence without inertia

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62901/1/405027a0.pd

    Stokes drift

    Get PDF
    During its periodic motion, a particle floating at the free surface of a water wave experiences a net drift velocity in the direction of wave propagation, known as the Stokes drift (Stokes 1847 Trans. Camb. Philos. Soc.8, 441-455). More generally, the Stokes drift velocity is the difference between the average Lagrangian flow velocity of a fluid parcel and the average Eulerian flow velocity of the fluid. This paper reviews progress in fundamental and applied research on the induced mean flow associated with surface gravity waves since the first description of the Stokes drift, now 170 years ago. After briefly reviewing the fundamental physical processes, most of which have been established for decades, the review addresses progress in laboratory and field observations of the Stokes drift. Despite more than a century of experimental studies, laboratory studies of the mean circulation set up by waves in a laboratory flume remain somewhat contentious. In the field, rapid advances are expected due to increasingly small and cheap sensors and transmitters, making widespread use of small surface-following drifters possible. We also discuss remote sensing of the Stokes drift from high-frequency radar. Finally, the paper discusses the three main areas of application of the Stokes drift: in the coastal zone, in Eulerian models of the upper ocean layer and in the modelling of tracer transport, such as oil and plastic pollution. Future climate models will probably involve full coupling of ocean and atmosphere systems, in which the wave model provides consistent forcing on the ocean surface boundary layer. Together with the advent of new space-borne instruments that can measure surface Stokes drift, such models hold the promise of quantifying the impact of wave effects on the global atmosphere-ocean system and hopefully contribute to improved climate projections.This article is part of the theme issue 'Nonlinear water waves'

    Hydrodynamic turbulence cannot transport angular momentum effectively in astrophysical disks

    Full text link
    The most efficient energy sources known in the Universe are accretion disks. Those around black holes convert 5 -- 40 per cent of rest-mass energy to radiation. Like water circling a drain, inflowing mass must lose angular momentum, presumably by vigorous turbulence in disks, which are essentially inviscid. The origin of the turbulence is unclear. Hot disks of electrically conducting plasma can become turbulent by way of the linear magnetorotational instability. Cool disks, such as the planet-forming disks of protostars, may be too poorly ionized for the magnetorotational instability to occur, hence essentially unmagnetized and linearly stable. Nonlinear hydrodynamic instability often occurs in linearly stable flows (for example, pipe flows) at sufficiently large Reynolds numbers. Although planet-forming disks have extreme Reynolds numbers, Keplerian rotation enhances their linear hydrodynamic stability, so the question of whether they can be turbulent and thereby transport angular momentum effectively is controversial. Here we report a laboratory experiment, demonstrating that non-magnetic quasi-Keplerian flows at Reynolds numbers up to millions are essentially steady. Scaled to accretion disks, rates of angular momentum transport lie far below astrophysical requirements. By ruling out purely hydrodynamic turbulence, our results indirectly support the magnetorotational instability as the likely cause of turbulence, even in cool disks.Comment: 12 pages and 4 figures. To be published in Nature on November 16, 2006, available at http://www.nature.com/nature/journal/v444/n7117/abs/nature05323.htm

    A preliminary study of the effect of closed incision management with negative pressure wound therapy over high-risk incisions

    Get PDF
    Background Certain postoperative wounds are recognised to be associated with more complications than others and may be termed high-risk. Wound healing can be particularly challenging following high-energy trauma where wound necrosis and infection rates are high. Surgical incision for joint arthrodesis can also be considered high-risk as it requires extensive and invasive surgery and postoperative distal limb swelling and wound dehiscence are common. Recent human literature has investigated the use of negative pressure wound therapy (NPWT) over high-risk closed surgical incisions and beneficial effects have been noted including decreased drainage, decreased dehiscence and decreased infection rates. In a randomised, controlled study twenty cases undergoing distal limb high-energy fracture stabilisation or arthrodesis were randomised to NPWT or control groups. All cases had a modified Robert-Jones dressing applied for 72 h postoperatively and NPWT was applied for 24 h in the NPWT group. Morphometric assessment of limb circumference was performed at six sites preoperatively, 24 and 72 h postoperatively. Wound discharge was assessed at 24 and 72 h. Postoperative analgesia protocol was standardised and a Glasgow Composite Measure Pain Score (GCPS) carried out at 24, 48 and 72 h. Complications were noted and differences between groups were assessed. Results Percentage change in limb circumference between preoperative and 24 and 72 h postoperative measurements was significantly less at all sites for the NPWT group with exception of the joint proximal to the surgical site and the centre of the operated bone at 72 h. Median discharge score was lower in the NPWT group than the control group at 24 h. No significant differences in GCPS or complication rates were noted. Conclusions Digital swelling and wound discharge were reduced when NPWT was employed for closed incision management. Larger studies are required to evaluate whether this will result in reduced discomfort and complication rates postoperatively

    Quantifying the burden of rhodesiense sleeping sickness in Urambo district, Tanzania

    Get PDF
    Sleeping sickness (human African trypanosomiasis - HAT) is a disease transmitted by tsetse flies and is always fatal if left untreated. The disease occurs in foci affecting poor communities with limited access to health service provision and as such the disease is often left undiagnosed, mistaken for more common afflictions. Even if diagnosed, sleeping sickness is costly to treat, both for health services and patients and their families in terms of costs of diagnosis, transport, hospital care, and the prolonged period of convalescence. Here we estimate the health burden of the acute form T. b. rhodesiense sleeping sickness in Urambo District, Tanzania in terms of Disability Adjusted Life Years (DALYs), the yardstick commonly used by policy makers to prioritize disease management practices, representing a year of healthy life lost to disease. In this single district, the burden of the disease over one year was estimated at 979 DALYs and the estimated monetary costs to health services for the 143 treated patients at US11,841andtothepatientsthemselvesatUS 11,841 and to the patients themselves at US 3,673 for direct medical costs and US$ 9,781 for indirect non-medical costs. Sleeping sickness thus places a considerable burden on the affected rural communities and health services
    • 

    corecore