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A B S T R A C T   

Standard white light (WL) endoscopy often misses precancerous oesophageal changes due to their only subtle 
differences to the surrounding normal mucosa. While deep learning (DL) based decision support systems benefit 
to a large extent, they face two challenges, which are limited annotated data sets and insufficient generalisation. 
This paper aims to fuse a DL system with human perception by exploiting computational enhancement of colour 
contrast. Instead of employing conventional data augmentation techniques by alternating RGB values of an 
image, this study employs a human colour appearance model, CIECAM, to enhance the colours of an image. 
When testing on a frame of endoscopic videos, the developed system firstly generates its contrast-enhanced 
image, then processes both original and enhanced images one after another to create initial segmentation 
masks. Finally, fusion takes place on the assembled list of masks obtained from both images to determine the 
finishing bounding boxes, segments and class labels that are rendered on the original video frame, through the 
application of non-maxima suppression technique (NMS). This deep learning system is built upon real-time 
instance segmentation network Yolact. In comparison with the same system without fusion, the sensitivity 
and specificity for detecting early stage of oesophagus cancer, i.e. low-grade dysplasia (LGD) increased from 75% 
and 88% to 83% and 97%, respectively. The video processing/play back speed is 33.46 frames per second. The 
main contribution includes alleviation of data source dependency of existing deep learning systems and the 
fusion of human perception for data augmentation.   

1. Introduction 

This paper introduces the fusion of colour contrasted images and 
their original counterparts to improve the detection accuracy for early 
diagnosis of oesophageal cancer and precancerous changes during 
endoscopic procedures in real time. 

Oesophagus cancer (EC) remains the 9th most common cancer [1] 
and the 6th leading cause of cancer-related death [2] in the world. In 
2018, the estimated number of new cases was 572,000, of which 

approximately 509,000 persons (89%) died from oesophageal cancer 
[1]. Histologically, there are two major types that constitute the ma
jority of all oesophageal cancers, adenocarcinoma and squamous cell 
carcinoma cancer (SCC) (87%) [3,4]. 

While the overall five-year survival rate of oesophagus cancer is less 
than 20% [5], this figure can be improved significantly to up to 90% if 
an oesophageal cancer is detected in its intramucosal stage when lymph 
node metastasis is unlikely, and endoscopic resection or surgery is 
possible. As reported by Naito et al. [6] and Takana et al. [7], endoscopic 
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Lieberman, Jan Bornschein, Oliver Brain, Jane Collier, Emma Culver, James East, Alessandra Geremia, Bruce George, Lucy Howarth, Kelsey Jones, Paul Klenerman, 
Simon Leedham, Rebecca Palmer, Fiona Powrie, Astor Rodrigues, Jack Satsangi, Alison Simmons, Simon Travis, Holm Uhlig, Alissa Walsh.  

2 Both Gao and Braden are corresponding authors. 

Contents lists available at ScienceDirect 

Information Fusion 

journal homepage: www.elsevier.com/locate/inffus 

https://doi.org/10.1016/j.inffus.2022.11.023 
Received 9 September 2022; Received in revised form 14 November 2022; Accepted 20 November 2022   

mailto:x.gao@mdx.ac.uk
mailto:braden@em.uni-frankfurt.de
www.sciencedirect.com/science/journal/15662535
https://www.elsevier.com/locate/inffus
https://doi.org/10.1016/j.inffus.2022.11.023
https://doi.org/10.1016/j.inffus.2022.11.023
https://doi.org/10.1016/j.inffus.2022.11.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2022.11.023&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Information Fusion 92 (2023) 64–79

65

or surgical resection can achieve excellent curative outcome as long as 
the oesophageal cancer is confined to the first layer of the oesophageal 
wall, i.e. intramucosal stage (T1a), and the tumour has not gone beyond 
the first layer of the oesophageal wall as then lymph node metastasis is 
highly unlikely. However, if the tumour reaches the second layer, the 
submucosal stage (T1b), the risk of lymph node invasion is already 
substantial. Overall, the 5-year survival rate for T1a patients is 94% and 
72% for T1b patients. 

Unfortunately, routine upper gastrointestinal endoscopy carries a 
significant miss rate for detecting oesophageal cancer and precancerous 
lesions due to their inconspicuous changes in the surface appearance in 
the early intra-mucosal stage, which is determined by a number of 
research groups, including Georgina et al. [8], Chai et al. [9], and de 
Santigo at al. [10]. As a result, around 25% [11], i.e. 1 in 4, of patients of 
oesophageal cancer were given normal findings the year before when 
the diseased regions only presented subtle changes in comparison with 
normal mucosa (oesophageal linig). 

The challenges clinicians face in detection of precancerous changes 
in squamous epithelium and early stages of SCC are the inconspicuous 
appearance of affected regions and detection speed. To minimise pa
tients’ discomfort while undergoing endoscopy, time is limited, usually 
~10mins are scheduled, assigning clinicians to inspect ~18,000 frames 
(=30 frames/sec × 60 s × 10 min) in such short period. Furthermore, the 
early onset of SCC grows usually flat with only subtle changes in 
appearance in both colour and microvasculature compared to normal 
epithelium when the endoscopy is performed as conventional white 
light endoscopy (WLE). Fig. 1 exemplifies some neoplastic lesions in 
squamous epithelium where red colour refers to ‘cancer ’, blue to ‘High 
grade of dysplasia’ (HGD) and green to ‘Low grade dysplasia’ (LGD). The 
suspicious regions are delineated by clinicians and had been histologi
cally confirmed by targeted biopsies. 

The response of tissues to an illuminating endoscopic light strongly 
depends on the tissue properties and on the spectrum the light accom
modates. Under conventional WLE (Fig. 1(a)) pre-cancerous squamous 
neoplasia present discrete variations with subtle changes to normal 
tissue. While narrow-band imaging (NBI) [12] (Fig. 1(b)) takes advan
tage of spectral principles by employing two wavelengths at 415nm 
(blue) and 540nm (green), it is confined to only two mono-colour bands. 
Another imaging approach is dye-based chromo-endoscopy, e.g. Lugol’s 
staining technique, which highlights dysplastic abnormalities with 
depleted glycogen storages by spraying iodine [13], producing images 
with orange-like colours and unstained areas of dysplasia (Fig. 1(c). 

NBI technique mainly facilitates the detection of unique vascular 
pattern morphology that are present in neoplastic lesions [14]. How
ever, precancerous stages can take a variety of forms which sometimes 

are difficult to recognise (Fig. 1(b) arrow). On the other hand, for 
Lugol’s staining approach, some patients react uncomfortably to the 
iodine spray, which limits its application. 

Hence, it is of a clinical priority to have a computer assisted diag
nostic (CAD) system that supports clinicians’ decision-making in real 
time by highlighting potentially neoplastic regions while patients are 
undergoing endoscopic inspection. In this way, the system can prompt to 
take a biopsy from the correct spot, which will lead to facilitating 
endoscopic treatment by delineating the lesion and identifying patients 
in need for surveillance, all to prevent progression to cancer. 

For the development of such CAD systems applying deep machine 
learning techniques, the main obstacles encountered are the lack of 
labelled ground truth dataset and insufficiency of generalisation, espe
cially in the medical domain. 

To overcome these hurdles, many researchers capitalise on a number 
of well-known techniques to enhance system robustness and perfor
mance. These techniques include transfer learning to apply pre-trained 
networks instead of training from scratch, weakly/unsupervised 
learning to analyse images only with limited labelling, generative 
frameworks to learn to generate images allowing algorithms understand 
main distinctive features and multitask learning to learn interrelated 
concepts in an attempt to produce better generalisations [15,16]. 

To address data insufficiency, several research teams work on the 
findings of the optimal number of dataset in order to achieve the best 
system performance [17,18]. While a larger number of data contributes 
to higher accuracy in results, it appears that the performance reaches a 
plateau at a certain data size point. This tends to be domain orientated. 
In addition, the performance of a developed system is dependant on its 
ability for generalisation [19,20]. 

In deep leaning community, Generalisation remains one of the 
fundamental unsolved problems. A model optimised on a finite set of 
training data usually does not perform well on a held-out test set [21]. 
This is because there is gap between theory and practice. This gap is 
exacerbated when a model is over-parameterised, by which the theory 
has the capacity to overfit the given train sets but often does not in 
practice. One solution, as proposed by Nakkiran et al. [21], is to perform 
online optimization to allow the trained model to access to an infinite 
stream of sample data and hence to update and adapt iteratively and 
constantly. This approach, however, has challenges when it is applied to 
the medical domain where confidential patient data should not be 
distributed nor placed online. Universal consenting for anonymised data 
feeding might allow this in medicine. 

In Endoscopy, a number of different approaches have been proposed 
to generalise the trained models by augmenting datasets in various 
forms, for example, further enhancing and highlighting neoplastic 

Fig. 1. Examples of diseased regions where boundary red=’cancer’, green=’LGD’, blue=’HGD’. Top row: original images; bottom: with labelled masks delineated by 
the experts. (a) WLE; (b) NBI; (c) Lugol’s. Arrows pointing to the lesioned regions with subtle changes in comparison with surrounding normal tissue. 
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regions. While spectral [22] or multi-spectral imaging (with 4 to 16 
mono spectrum bands) or hyper-spectral imaging [23] (16 to 40 bands) 
techniques have demonstrated potential to depict endogenous contrast 
capitalising on wavelength-dependant light-tissue interactions [24,25], 
these systems require complex designated optical devices to acquire 
spectral signals, giving rise to operational difficulties, including physical 
implementation, prolonged acquisition time and post co-registration. 

Hence, this study proposes a novel approach to improve endoscopic 
detection of pre-cancerous changes in squamous epithelium while 
leveraging the issue of data shortage. It fuses the enhanced images with 
the original ones by increasing the colour contrast of neoplastic areas to 
their surroundings. To alleviate the insufficiency of generalisation of the 
developed system, this contrast enhancement originates from human 
colour perception by applying the colour appearance model of CIE
CAM02 [26], standardised by the Commission Internationale de l’éclairage 
(CIE). CIECAM02 and its recently simplified version CAM16 [27] are 
modelled to simulate human visual perception to transform between 
physical colour spectral values of CIE tristimulus (XYZ) and perceptual 
attribute correlates, lightness (J), colourfulness (C) and Hue (H), by 
taking the viewing conditions into account. These contrast-modified 
endoscopic images are then added to the training of a deep 
learning-based system for detection, delineation and classification of 
LGD, HGD or SCC. Upon testing, for each frame, the system will generate 
its contrasted one automatically and process them together with the 
final fused detection results displayed on the original image. 

The remaining of this paper is structured as follows. Section 2 briefly 
reviews the state-of-the-art deep learning architectures for performing 
real time tasks of detection, segmentation as well as classification, which 
is followed by Section 3 that entails the methodology employed in this 
work. The results are presented in Section 4, which leads to the dis
cussion and conclusion in Sections 5 and 6 respectively. 

2. Related work 

2.1. State of the art deep learning systems for analysis of oesophageal 
images and videos 

Progress on diagnosis of oesophageal cancer through the application 
of artificial intelligence (AI) using convolutional neural networks (CNN) 
has been made by several research teams recently [28,29]. For example, 
research conducted by Horie et al. [30], distinguishes oesophageal 
cancers from non-cancer patients with an aim to evaluate diagnostic 
accuracy. While applying conventional CNN architecture to classify two 
classes, they are able to achieve 98% sensitivity for cancer detection. 
The work carried out by Ghatwary et al. [31], evaluate several state of 
the art (SOTA) CNN approaches, aiming to achieve early detection of 
SCC from high-definition white light endoscopy (HD-WLE) images, and 
conclude that the approaches of SSD [32] and Faster R-CNN [33] 
perform better. Again, two classes are investigated in their study, i.e. 
cancer and normal subjects. While these studies exhibit high accuracy of 
classification, the main focus of those research remains on the binary 
classification of normal from abnormal. With regarding to early detec
tion of any potential suspicious regions regardless how small they are, 
segmentation of abnormal regions also plays a key role in delegating 
clinical decisions. This is because the collection of a biopsy, as well as 
treatment, necessitates to pin point the exact spot while clinicians also 
are negotiating with the movements of the heart, respiration, peristalsis 
and endoscopic camera during endoscopy procedures. 

In addition, in order to assist clinicians with the diagnosis while 
performing endoscopy, real-time processing of videos, i.e. with pro
cessing speed of 24+ frames per second (fps) or at most 41 milliseconds 
(ms) per frame, should be realised. The work carried out by Everson 
et al. [34], is able to achieve inference time between 26 and 37 (ms) for 
an image while attempting to perform characterisation of abnormities 
by applying AI techniques. However, their image size appears to be half 
of ours at a resolution of 696 × 308 pixels. More recently, the 

decision-making support system by Guo et al. [35], can realise video 
processing times at 25 frames per second, which however is only applied 
for narrow band images (NBI). Table 1 summarises the current devel
opment in assisting diagnosis of oesophageal cancers. 

As addressed above, these existing studies focus mainly on binary 
classification of endoscopic images between normal and grossly 
abnormal stages with little work providing bounding boxes of suspicious 
regions (detection) and delineation (segmentation), which is especially 
important when an image contains multiple lesions of varying diseased 
grades. 

To segment an image, there are approaches of two-stage and one- 
stage. The region-based CNN, or R-CNN [39] family comprises two 
major steps. The first step proposes a set of regions of interests by se
lective search. Then a classifier e.g. Support Vector Machine (SVM), is 
applied to process those candidate regions in this second step. 

2.2. Real-time processing 

While these region-based object detection algorithms can achieve 
high accuracy, they are too slow for real-time video processing at about 
~1 second per frame [38] while applying masque R-CNN [40]. Hence 
single-stage approaches are sought after. 

One-stage method skips the region proposal stage and runs detection 
directly over a dense sampling of possible locations. As a result, this 
approach is faster and simpler, but might potentially pull down the 
performance to a certain extent. This one-shot category includes models 
of SSD [32], YOLO family [41] and RetinaNet [42]. In comparison, 
RetinaNet performs the best in accuracy whereas YOLOv3 runs 3.8x 
faster and achieves better and faster results than SSD. 

Although all these one-stage approaches can achieve better perfor
mance with fast processing speed, they don’t provide masks, i.e., seg
mentation, of the objects in concern, which limits their applications to a 
certain extent. This is because taking a biopsy requires a precisely 
defined/segmented location. From computation point of view, yielding 
masks in additional of bounding boxes inevitably increases processing 
time, which hampers the development of real time systems. 

More recently, the network of Yolact [43] (you only look at coeffi
cient) that is built upon one-stage RetinaNet by adding a masque branch, 
not only can provide instance segmentation but also is able to achieve 
real-time inference with an average 33.5 frames per second (fps) on MS 
COCO datasets. In this study, Yolact is applied with the fusion of con
trasted images. 

3. Methodology 

3.1. The architecture of fused system for real time processing of 
endoscopic videos 

Fig. 2 outlines the architecture of the fused system developed in this 
study. When an image (2(a)) is loaded, its contrasted counterpart (2(b)) 
is generated by the system (to be elaborated in 3.2). After producing 
bounding box regression coefficients and class confidences for each of 
original (2(d)) and contrasted images (2(e)) applying Yolact model (2 
(c)) [43], the fusion of final detection results takes place (2(f)). All the 
detected anchors/regions from both images are assembled together with 
the final determined detectors being manifested on the original image. 
As such, the non-maxima suppression technique (NMS) [40,43] is 
employed to determine whether an instance should be kept or discarded. 
The duplicated detections are suppressed not only for each class, but also 
for cross-class boxes. For example, in Fig. 2, the probability for a region 
to be a ‘cancer’ is 0.64 (2(d)) whereas the same region detected on the 
contrasted image has a likelihood of 0.99 to be ‘low grade’ (2(e)). Hence 
the classification outcome for this concerned region is ascertained as 
LGD (2(f)). 

In Fig. 2, for training, the enhanced images (2(b)) are generated in 
advance and fed into the deep learning network of Yolact (2(c)) together 
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with original images (2(a)). Each image is treated independently. For 
testing, only the original video is inputted (2(a)). For each frame (2(a)), 
its enhanced counterpart (2(b)) is generated automatically. Both images 
are detected one after another (2(d) & 2(e)). Then fusion takes place (by 
producing combined detected regions in a vector) to construct the final 

detection superimposed on the original image (2(f)). 
For the end-to-end detection system of Yolact (Fig. 2(c)), the basic 

underline model applies ResNet101 [44] to extract initial feature maps. 
The object segmentation is accomplished through two parallel subnets 
(ProtoNet and Prediction Head), which generates a set of prototype masks 

Table 1 
Summarisation of current SOTA systems on endoscopy.  

Refs. Modality Class 
(Number) 

Approach Image Size (max pixel) Sensitivity 
(%) 

Specificity 
(%) 

Speed 
(fps) 

Ohmori et al. [28] WLE, NBI 2 CNN 300 × 300 100 69  
De Groof et al. [29] Barrett 2 ResNet-UNet 256 × 256 93 83  
Horie et al. [30] WLE, BNI 2 CNN 300 × 300 98 79 41.1 
Ghatwary et al. [31] HD-WLE 2 R-CNN 512 × 512 96 92  
Everson et al. [34] ME-NBI 4 CNN 696 × 308 89.7 96.9 27 
Guo et al. [35] NBI 2 CNN 34mm 98.0 95.0 25 
Mashimo et al. [36] VCE 2 CNN 1024 × 1024 98  41.1 
Tsai et al. [23] Hyperspectral 3/4 VGG  91 94  
Dumoulin et al. [37] WL (Barrett) 2 CNN  96 92  
Gao et al. [38] NBI, WLE, Lugol’s 3 YoloV3 1920 × 1080 84 89 15  

Fig. 2. The fused network for detection, delineation and classification of early stage of oesophagus cancer. (a) original image; (b) enhanced image; (c) deep learning 
system, (d), (e) initial generation of bounding boxes; (f) final fused detection results. 

Fig. 3. Protonet architecture depicting an image with 550 × 550 pixels with 32 (k) prototypes whereby arrows indicating 3 × 3 conv layers. The last layer has conv of 
1 × 1. (a) The backbone model Resnet for feature extraction with lower resolution indicating higher semantics. (b) Feature pyramid. (c) Three anchors selected at 
each location with different bounding boxes. (d) Prototypes (k = 32) with a full image size (550 × 550). 
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and predict per-object masque coefficients respectively as explained at 
Sections 3.1.1 and 3.1.2 respectively. 

3.1.1. Protonet 
Parallel subnet 1, Protonet, in essence, is to generate a dictionary of 

non-local prototype masks over the entire image as presented in Fig. 3, 
ProtoNet employs a fully connected network (FCN) accommodating the 
largest pyramid feature layer (P3), to produce a set of image-sized pro
totype masks. These k masque prototypes (k = 32 in this study, e.g. [A1,

A2, …, A32]) are then applied to deliver predictions for the entire image 
in relation to classification, segmentation and detection. For detection 1 
(‘cancer’) and detection 2 (‘suspicious’) in Fig. 2 with a set of 32 co
efficients [e1, e2, …, e32] and [b1, b2, …, b32] respectively (to be pre
dicted in the Prediction Head in the next section), the two segment 
marks are calculated as in Eqs. (1) and (2) respectively. 

mask1 = e1A1 + e2A2 + … + e32A32 (1)  

mask2 = b1A1 + b2A2 + … + b32A32 (2) 

In Fig. 3, the last layer tends to have low resolution but contains 
strong semantical features. In contrast, the input image has high reso
lution but with weak semantic features. This protonet operates in a top- 
down pathway to build prototypes from semantic rich layers. 

For an input image with pixels 550(w) × 550(h), the convolution 
network on 3(a)(b) performs forward pass computing. Since protonet 
uses input from P3 (69 × 69 pixels), the deeper backbone layer, the 
generated masks tend to be more robust. After three more layers with 3 
× 3 convolution (conv), the increase in size by up-sampling process will 
generate k (= 32) full image size prototypes as shown in Fig. 3(d). There 
are no explicit losses on the prototype masks (more in Section 3.1.3). 
This conv layers from FCN produces k (= 32) masks (Fig. 3(d)) as a 
matrix P[w × h × k]. At each location of each feature map, three 
candidate regions, coined as anchors, with varying sizes and different 
bounding boxes are selected as potential regions of interest (RoI) for 
segmentation as elaborated in Section 3.1.2. 

3.1.2. Prediction head 
Parallel subnet 2, entails both predictions of class and bounding box 

and masque coefficient head for segmentation, which is illustrated in 
Fig. 4. 

Each of five pyramid layers is of square shape with pixel sizes being 
692, 352, 182, 92, 52 for P3, P4, P5,P6 and P7 respectively. At each pixel 
position of each layer, 3 anchors (A) are created as candidate RoIs. 
Hence in total, there will be 19, 248 (= 3 × (692 +352 +182 +92 +5 2))

anchors for each input image. The three anchors have aspect ratio (AR=

w/h) of [1; 1 /
̅̅̅
2

√
;

̅̅̅
2

√
] × 5 . When AR is 1, the anchor size is 3 × 3 

where 4.12 × 2.12 and 2.12 × 4.12 (4.12 = 3 ×
̅̅̅
2

√
, 2.12 = 3 

/
̅̅̅̅̅
2

√
) are for AR being 1/

̅̅̅
2

√
and 

̅̅̅
2

√
respectively. For each anchor, its 

bounding box is chosen randomly from five pre-defined ones, which 
have pixels of (242,482 ,962, 1922, 3842). 

In addition, Prediction Head contains three branches, which are c 
class confidence (c = 3 for ‘SCC’, ‘HGD’, ‘LGD’), 4 bounding box re
gressors (=[xtop− left− corner, ytop− left− corner, xbottom− right− corner,

ybottom− right− corner]), and a vector of masque coefficients, one for each 
prototype to be processed in parallel. In Fig. 4, the prediction head 
produces c=[0.99, 0.006,0.004], box = [28,71,254,272], and one 32- 
masque-coefficient e=[1,− 1, 1,− 1,− 1,− 1,− 1,− 1, 1,− 1, 
1,− 1,− 1,− 1,− 1,− 1, 0,− 1, 0, − 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] (Fig. 4 
(d)). 

When these coefficients operate on the prototypes obtained from 
protonet (Fig. 3)) using Eq. (1), one detection (‘Detection 1′) is deter
mined in Fig. 4(e). After crop and threshold (4(f)), together with out
comes from the first 2 branches of class and box, the final detection is 
superimposed on the original image (4(g)). Table 2 exemplifies a vector 
of 32 masque coefficients for the first anchor derived at each pyramid 

layer Pi (i = 3, 4,5, 6,7) for the image in Fig. 4. For instance, at P3 
layer, there will be 14,283 (= 69 × 69 × 3) sets of 32-element vec
tors, where 3 indicates anchor numbers selected at each feature point. 

In summary, all three branches in Fig. 4(c) deliver a vector size of 
4 + c + k for each anchor (A). As a result, for each instance, one or 
more masks will stem from that instance by linearly combining (plus or 
minus) the outputs from both prototype and masque coefficient 
branches (e.g. ‘Detection 1′ in Fig. 4(e)), leading to the production of 
final masks (M) (Fig. 4(f)) by a sigmoid nonlinearity as formulated in 
Eq. (3). 

M = σ
(
PET) (3)  

where P is an w × h × k matrix of prototype masks and E is a n × k 
matrix of masque coefficients for n instances 
(n = 2 (

′detection 1′ and ′detection 2′

) in Fig. 2 and n = 1 in Fig. 4) that 
have passed score thresholding and initial NMS as given in Fig. 4(d). In 
addition, ET indicates the transpose of E matrix. 

3.1.3. Loss function 
The calculation of the loss function is the same as for Yolact [43]. 

Three loss functions are utilised to train this end-to-end detection model 
as formulated in Eq. (4), which are classification loss (L class), box 
regression loss (L box) and masque loss (L mask) where the weights of 1, 
1.5, and 1.5 are applied for them respectively to give more weight to 
classification. 

L = L class + 1.5 L box + 1.5 L mask (4) 

In particular, 

L mask = BCE
(
M,Mgt

)
(5)  

where the binary cross entropy BCE is formulated using Eq. (6). 

BCE(p, y) = −
1
N

∑N

i=1
[yilog(pi)+ (1 − yi)log(1 − pi)] (6)  

where y represents the label and p is the predicted probability of the 
point being a label for all N points. M and Mgt are calculated in Eq. (3). 

It should be noted that neither k masque coefficients nor the k pro
types have losses directly occurred on them. Instead, they receive su
pervision form the final masque loss [43]. For example, if there is a 
vector c (1 ×k) and a prototype matrix P (w× h ×k) with ground truth 
of gtbox(1 × 4) and a binary gtmask (w × h × 1), the masque is calcu
lated using Eq. (7). 

mask = sigmoid(P@c.t()) = sigmoid(P1c1 +P2c2 + ⋯ + Pkck) (7)  

where @ is matrix multiplication and .t() the transpose. 
Then the loss is computed as 

mask loss tensor = − gtmask ∗ log (mask) − − (1 − gtmask)

∗ log(1 − mask) (8) 

For the purpose of stability, the masque loss if cropped with refer
ence gt box, which is given in Eq. (9). 

mask loss crop = crop(mask loss tensor, gtbox) (9) 

Finally, the losses from all RoIs are summed up as 

L mask = maskloss = mask loss crop.sum() / (gtbox.w ∗ gtbox.h) (10) 

As a result, both k prototypes and k masque coefficients receive su
pervision through Eq. (7). 

For back propagation, because derivative of sigmoid (x) is 
sigmoid(x)(1 − sigmoid(x)), the derivative of Eq. (7) is formulated in Eq. 
(11). 

∇mask(P) = mask(1 − mask) ∗ c.t() (11) 
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the ‘loss signal’ that for example, prototype 1 (P1), gains, is essentially 
just weighted by c1 so that the pixels that receive loss are weighted by 
mask(1 − mask). In other words, if c1 is high and there is a high error, 
then backpropagation will try to reduce the activations of P1, which is 
visa versa for negative coefficients. 

3.1.4. Implementation 
The code is implemented in Python using the PyTorch library under 

Windows 10 Pro with 64GB RAM and executed using 2 NVidia GeForce 
GTX 1080Ti GPU cards. The decaying cyclic learning rate (LR) scheme 
[45] is employed with min and max learning rate 1.3 × 10− 4 and 1 ×
10− 3 respectively. The cycle length is 50 epochs and at each cycle the 
max LR decays by a factor of 0.8. A maximum of 500 epochs is trained 
with early stopping. The batch is set to 4. The ratio between training and 
validation is set to be 0.9 to 0.1. While this split is initially conducted 
randomly, manual check follows to ensure that the validation samples 
contain all three categories (i.e. SCC, HGD and LGD). For testing or 
evaluation, the independent cohort of subjects are employed, which are 
not part of training/validation set. 

For training, the contrasted images are pre-processed in advance and 
added to the training set as augmented data (Fig. 2(c)). For testing, upon 
each input frame, the system generates its contrasted counterpart 
automatically. After prediction of masks by model in 2(c), the fusion 
applying NMS with the final detection being presented on the original 
input frame (Fig. 2(f)). 

3.2. Generation of contrasted images based on colour appearance model 
CIECAM 

Fig. 5 illustrates the steps of colour contrast enhancement for both 
WLE and NBI images. 

Firstly, the characterisation of the endoscopy camera (5(a)) is per
formed by recording a palette with 24 standard colours. This palette is 
also measured using a telespectroradiometer under D65 (average 
daylight). As such, the correlations between endoscopic camera RGB 
values (5(d)) and CIE tristimulus values of XYZ (5(f)) is established by a 
matrix (M) (5(g)). XYZ values are of RGB equivalent calculated from 
physical colour spectral distributions. Then based on CIE XYZ values, 
colour appearance model CIECAM is applied to calculate lightness (J), 
colourfulness (C) and hue (H), for each pixel of an input image (5(h), left 
most). JCH space represents the colour attributes from human colour 
perception point of view where J has a range between 0 (no light at all) 
and 100 (brightest) and H has a circular angle scope with 0 (=360) for 

Fig. 4. The architecture of prediction head. (a) Backbone model Resnet. (b) Feature pyramid to extract features at each layer where P3 = 692, P4=352, P3=182, 
P6=92, P7=52. (c) The network outputs 3 predictions, class, box corner and 32 masque coefficients for each proposed anchor (A). 

Table 2 
An example of 32 masque coefficients (tanh) (for 32 prototypes) for the 5 pyr
amid layers (P3, P4, P5, P6, P7) for the image shown in Fig. 3. The data listed, are 
for the first anchor at each layer.  

Pyramid 
layers 

feature 
size 
(w £ h £
3)  

masque coefficients (tanh) 
(32, c1, c2, …, c32) 

P3 69 × 69 ×
3 

[0.9175, 0.9317, 0.9872, 0.6649, 0.3953, − 0.0503, 
0.7729, 0.5816, 
− 0.4834, 0.8479, 0.5081, 0.4353, 0.8370, − 0.9635, 
0.3952, − 0.0851, 
0.9728, − 0.9942, 0.7079, 0.9088, − 0.7926, 
− 0.0494, − 0.9997, 0.8667, 
− 0.8194, 0.2543, − 0.8955, 0.0538, 0.9622, 
− 0.5045, − 0.5384, − 0.9494] 

P4 35 × 35 ×
3 

[0.2748, 0.9299, 0.7294, 0.9010, 0.9692, 0.9672, 
0.8719, − 0.7058, 
0.5522, 0.6635, − 0.1631, 0.2940, 0.7662, − 0.9677, 
− 0.8431, 0.3476, 
0.8857, − 0.8650, 0.4092, 0.2447, 0.1359, − 0.4158, 
− 0.9995, 0.2356, 
− 0.5991, 0.2983, − 0.8600, − 0.8697, 0.3570, 
0.8869, 0.0706, − 0.9905] 

P5 18 × 18 ×
3 

[0.3361, − 0.4003, 0.0616, 0.5602, 0.7161, 0.1989, 
0.6456, − 0.1318, 
− 0.3904, 0.1712, − 0.4186, − 0.2396, 0.1058, 
− 0.1932, 0.2075, 0.3701, 
0.1465, − 0.2645, 0.0797, 0.3279, − 0.1003, 
− 0.0881, − 0.8534, 0.4506, 
− 0.5582, 0.2145, − 0.0331, − 0.0449, − 0.0223, 
− 0.3415, − 0.1010, − 0.4421] 

P6 9 × 9 × 3 [0.1814, − 0.0925, 0.0594, 0.3306, 0.7110, 0.2590, 
0.3865, − 0.1222, 
− 0.0477, 0.2004, − 0.2092, − 0.1247, − 0.0115, 
− 0.0665, − 0.1179, 0.1331, 
0.3571, − 0.1150, − 0.1220, 0.2321, − 0.3143, 
− 0.0296, − 0.7765, 0.2023, 
− 0.0271, 0.0126, − 0.1410, − 0.0694, 0.1867, 
− 0.0024, 0.0726, − 0.4259] 

P7 5 × 5 × 3 [− 0.1802, 0.0252, 0.1598, 0.2193, 0.3605, 0.3903, 
0.1625, 0.1952, 
0.0568, 0.5383, 0.2495, − 0.1586, 0.1725, − 0.0497, 
0.0635, − 0.4187, 
0.0761, 0.0047, − 0.0722, 0.4321, 0.2760, − 0.0512, 
− 0.4908, 0.1064, 
0.1488, 0.2174, − 0.3078, 0.0556, 0.2783, − 0.1092, 
0.0603, − 0.3493]  
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red, 90 for yellow, 180 for green and 270 for blue. Colourfulness C refers 
to the amount of the concerned hue with 0 indicating no hue (e.g. grey) 
at all. Although C has no up limit, i.e., as colourful as an object can get, 
for most endoscopic images with white light or NBI, the maximum C 
value is around 70 [46]. 

As demonstrated in Fig. 6 (top row), after a series of measurement 
taking place for images between diagnosed LGD regions (blue boxes) 
and their immediate surrounding normal tissues (yellow boxes), the 
biggest difference appears to occur in colourfulness (C) when repre
sented using JCH space. Hence enhancement takes place by simply 
modifying C values employing Eq. (12). 

Cnew = C ∗ C ∗ β (12)  

where β = max(C)/max(Cnew), which is to allow small colourfulness 
being smaller and large being larger, hence to widen the differences in 

colourfulness, while maintaining the updated colourfulness being 
consistent with the original value range. 

After adjustment of colour attributes, the JCH values are converted 
back to XYZ using the inverted matrix M− 1 (Fig. 5(h)) and then to RGB 
for the final display of enhanced images (Fig. 6 bottom row). Together 
both original (WLE and NBI) and their enhanced ones are employed to 
train a deep learning system for detection of cancer (SCC), high grade of 
dysplasia (HGD) and LG dysplasia (LGD). 

The background information used in CIECAM is the averaged 
epithelium colour measured from normal subjects, for both WLE and 
NBI under standard viewing environment of D65 as given in Table 3. 

In addition, two standard models for measuring colour differences 
are employed, which are CIECAM and CIEL ∗ a ∗ b∗ (=CIELAB) as 
formulated in Eqs. (13) and (14) respectively. 

Fig. 5. Colour contrast improvement using CIECAM model. (a)–(c) Endoscopy recording of a standard 24-colour checker and measuring the same colour checker 
under average daylight D65 (e) to obtain the relationship between image RGB values (d) and CIE tristimulus values XYZ (f) by a 3 × 3 matrix (M) for endoscopic 
cameras (g). (h) Workflow to enhance colour contrast by CIECAM model. 

Fig. 6. Examples of contrast measurement between known LGD regions (blue dashed box) and their normal tissue surroundings (yellow dashed box). Top row: 
original white light images. Bottom row: enhance images after applying Eq. (12). 
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ΔECAM =

∑
n

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Jd − Js)2
+ (Cd − Cs)

2
+ (Hd − Hs)

2
√

n
(13)  

ΔELab =

∑
n

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Ld − Ls)
2
+ (ad − as)2

+ (bd − bs)2
√

)

n
(14) 

Where subscript d refers to a diseased region (e.g. the blue boxes in 
Fig. 6 (top row)), s the surrounding region (e.g. the yellow boxes in Fig. 6 
(top row) and n the total number of disease-surrounding pairs. The 
colour attributes, i.e. L∗, a∗, b∗, J, C, H, are the averaged value of each 
manually selected region (Fig. 6). H in Eq. (13) has been normalised to 
be within [0,100] from [0,360] to be in the same range with the other 
two attributes (J and C). 

3.3. Endoscopic datasets 

High definition videos including WLE and NBI were collected from 
patients attending the Translational Gastroenterology Unit at the Oxford 
University Hospital UK, the Horton General Hospital, Banbury, UK and 
the Beijing General Hospital, China, using Olympus endoscopes (GIF- 
H260 or GIF-H290, EVIS Lucera CV260, Olympus Medical Systems, 
Tokyo, Japan) with recorded videos being in MP4 format, from which 
still images/frames were extracted. All patients included in this study 
have given written informed consent to donate biopsies, recording of 
endoscopic videos and analysis of their clinical data (REC Ref: 16/YH/ 
0247). 

In total, 389 videos were collected from 389 subjects. Table 4 pro
vides detailed information regarding to the distribution of the collected 
data sets to the development of concerned AI system. The class (e.g. SCC, 
HGD, LGD) that each subject was grouped into was based on the worst 
histological category of that patient as many subjects had multiple le
sions with categories of different histology grading, e.g. SCC, HGD and 
LGD. For training, no normal subject data are included because the 
background is treated as normal by default to avoid over-fitting. 

All videos and images were anonymised by removing all personal 
information in advance. Two experienced endoscopists with at least 15 
years of experience in endoscopic diagnosis and treatment of early 
oesophageal cancer annotated each image for patients with histologi
cally proven oesophageal squamous neoplasia. The labelling tools were 
the public software of VGG Image Annotator (VIA)3 or Amethyst4 

(Zegami, Oxford, UK). Both endoscopists were aware of the histological 
findings from biopsies taken during the endoscopy. 

These images are composed of modalities of WLE and NBI. Corrob
orated by patients’ histology, the surface structure, microvasculature 

and colour changes of any lesions on images were delineated (i.e. 
creating masks) and labelled with three classes (suspected dysplasia/low 
grade dysplasia (LGD), high grade dysplasia (HGD) and cancer (SCC)) 
using adaptable bounding areas with polygon refinement (bottom row 
in Fig. 1). The rest non-masque regions were classified as normal (NML), 
which is a default setting for training as control group. 

In Table 5, the number of images (video frames) that are for training 
and testing the developed software system is given. The training takes 
place based upon still images whereas testing can take either still image 
or video as an input. For each subject, each video lasts from 10 to 30 min 
at 30 frames per second, generating 18,000 to 54,000 frames per video. 
To avoid duplication of same lesions and hence over-fitting, for each 
subject, frames are selected at different oesophageal locations. Specif
ically, each video may contain frames of different histology grading, e.g. 
SCC, HGD and LGD, all of which are included in the experiments. In this 
collection, cancer images appear to have the smallest number, which 
may influence the system performance. However, the appearance of a 
cancer stands out considerably in comparison with that of HGD or LGD, 
leading to similar accuracy of the test (Table 7) whether cancer data are 
included or excluded. 

In addition, the main purpose of generating contrasted enhanced 
counterpart is to highlight low grade dysphasia (LGD) to underscore 
informed information whereas SCC and HGD present more outstanding 
visual features than LGD. Hence, the evaluation is also provided for 
detecting LGD only, which sustains a crucial part in identifying patients 
at risk of developing oesophageal cancer. 

It should be noted that the subject number is not the same as sample 
number. This is because several frames are selected from each subject’s 
video whereas each frame may contain more than one diseased region as 
illustrated in Fig. 1. 

3.4. Statistical measures for evaluating 

The accuracy of classification and detection are evaluated using 
common statistical measures of accuracy, recall/sensitivity, specificity 
whereas segmentation is assessed employing the intersection over union 
(IoU) as de facto gold standard for evaluating developed computer aided 
systems. The ground truth is based on the expert annotations in the 
knowledge of histological findings. 

The calculations for system performance are given in Eqs. (15)–(17) 
[47], where P = Positive, N = Negative, TP = True positive, FP =

False positive, TN = True negative, and FN = False negative. Sensi
tivity or probability of detection assesses the proportion of actual posi
tives that are correctly identified as such. For example, the percentage of 
‘cancer’ regions are correctly labelled as being ‘cancer’ by the computer 
system, whereas specificity or true negative rate identifies the propor
tion of actual negatives (i.e. non-cancer regions) that are correctly 
labelled as not being cancer. Both specificity and sensitivity are 
employed for evaluating the performance of classification as well as 
accuracy. 

Accuracy =
TP+ TN
P+ N

(15)  

sensitivity = recall =
TP

TP+ FN
(16)  

specificity =
TN

TN + FP
(17) 

In addition, the overlapping between the boundaries of 2 boxes is 
quantified using the intersection over union (IoU) as calculated in Eq. 
(18), which ascertains how much predicted boundary overlaps with the 
ground truth (the real object boundary). 

IoU =
area of overlap
area of union

(18) 

Table 3 
The averaged RGB and JCH values under D65 for normal subjects.   

Red 
(R) 

Green 
(G) 

Blue 
(B) 

Lightness 
(J) 

Colourfulness 
(C) 

Hue 
(H) 

WLE 205 136 113 32 16 34 
NBI 74 83 58 39 9 170  

Table 4 
Patient numbers (n) that are studied in this work with histological grading of the 
oesophageal lesions in squamous epithelium.  

Category SCC HGD LGD Normal Total 

Training 29 25 33  87 
Test (independent cohort) 15 17 20 250 302 
Total subject 41 42 53 250 389  

3 http://www.robots.ox.ac.uk/~vgg/software/via.  
4 https://zegami.com. 
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4. Results 

4.1. Visual detection of diseased regions from enhanced regions 

Evaluation of proposed enhancement is performed in both visual 
inspection and training a deep learning system. Visually, an expert 
clinician annotates 435 images (Table 5) for original WLE images and 
their corresponding contrasted ones, in comparison with the ground 
truth (GT) obtained before by different experts. To avoid memory cliché, 
the evaluation took place over a period of 3 months when each image 
group (enhanced and original) was annotated interchangeably using the 
VIA tool. For example, during an annotation day, 50 images in one group 
and 50 different ones from another group were selected where detection, 
delineation and labelling were performed. The time spent on each image 
was accumulated and averaged also provided in Table 6, together with 
the sensitivity and specificity of classification results for annotating the 
two groups of images. 

While both image groups yield high sensitivity and specificity, 
enhanced images tend to be more accurately classified with over 98% 
sensitivity, 3% higher than for the original group and 1.6% higher on 
specificity. Specifically, the time spent on delineating each colour 
enhanced frame is 41 s, 14 s (25%) less than the time spent on the 
original frame (55 s). The averaged overlapping region measured by IoU 
is 84% for contrasted images, 5% closer to the GT than for the original 
ones. 

Fig. 7 exemplifies a few annotated examples. With regard to lesioned 
regions, the enhanced group tends to present more detailed boundaries 
than the original image group, in comparison with GT. The GT regions 
are also the places where each corresponding biopsy is taken. For 
example, in the 2nd row, the one blue region on 7(c) was entailed by 2 
patches in 7(d). Fig. 7(e) shows the GT. 

In particular, most of the images that are overlooked from both 
original and enhanced groups are of low-grade dysplasia (LGD), high
lighting the challenges on detection of precancerous stages, especially 
within the time constraint during a real time endoscopy. Fig. 8 illustrates 
this challenge by demonstrating expert’s detection in original and 
enhanced images where the last column provides ground truth. 

4.2. Evaluation by training a deep learning network 

Table 7 supplies the detection results in terms of sensitivity, speci
ficity, and accuracy for the developed deep learning network trained 
using WLE only, fused with WLE + WLEenhanced, NBI only, fused with 
NBI + NBIenhanced, and fused with WLE + NBI + WLEenhanced 
+NBIenhanced. The conventional data colour augmentation approach ap
plies to the training without the fusion by altering RGB values for each 
input image. 

For detection of LGD only with WLE, when fusion is employed, a 7% 
increase is observed compared to the results without fusion in every 
measure, i.e. sensitivity, specificity and accuracy. For NBI, around 3% 
increase is achieved after fusion, which is expected. This is because, in 
essence, NBI is another form of colour enhancement from WLE by illu
minating only blue (415 nm) and green (540 nm) lights. Further contrast 
enhancement on NBI is only confined to this limited spectral range and 
may not reveal as much insights as from WLE. 

When evaluation for WLE with 3 classes (SCC, HGD, LGD), sensitivity 
improves by 8% with 4% increase of accuracy when fusion is employed. 
When both WLE and NBI are applied to train the deep learning system, in 
average, around 2% increase is observed across all three measures with 
3.4% increase in accuracy. For NBI with classification of 3 classes, the 
increase is marginal (1.1%), implying increasing contrast being more 
effective for WLE images, the mode that is currently the routine standard 
for performing endoscopic procedures. 

In Table 8, the averaged colour differences are assessed for 100 
samples for each of WLE and NBI randomly selected from each LGD 
region and its surrounding normal mucosa before and after contrast 
enhancement. 

It can be seen that the average difference for enhanced WL is 
increased significantly at p < 0.10 but not for the NBI (with 100 sample 
pairs) with 14.46 ΔEL*a*b* and 18.35 ΔECAM in comparison with 11.60 
ΔEL*a*b* and 13.12 ΔECAM for original images. For ΔEL*a*b measure, 
human beings cannot perceive any visual difference of 3 or less. Un
derstandably, the enhancement for NBI is not significant (p>0.1) as NBI 
itself is a form of enhancement from WLE by employing the combined 
lighting at wavelengths of 415nm (blue) and 540nm (green). 

Fig. 9 demonstrates the performance of this developed fused deep 
learning model on a clip of endoscopic video. The number next to the 
bounding box refers to the probability of classification, i.e. ‘suspicious 
0.93′ indicating the delineated region is 93% more likely to be LGD. The 
bounding boxes are colour-coded with red for ’SCC’, blue for ’HGD’, and 
green for ’LGD’. 

For the measurement of performance of detection and segmentation, 
the mean average precisions (mAP) are 67.9% and 59.1% respectively 
for predicted bounding box and segmentation mark. The Average Pre
cision (AP) is defined as the area under the precision-recall curve. AP is 
calculated for each class and averaged to get the mAP. 

Furthermore, the developed fused system is preliminarily assessed in 
the Endoscopy unit in Oxford for real-time detection as demonstrated in 
Fig. 10. The expert endoscopist (10(b)) watches the live endoscopic 

Table 5 
Training and testing data sets in image/frame numbers, where en-WLE=enhanced WLE; en-NBI=enhanced NBI. 3-class=[‘SCC’, ‘HGD’, ‘LGD’]. 1-class refers to 
training with only ‘LGD’ whereas NML as default.  

Category SCC HGD LGD Normal Total  
Train Test Train Test Train Test Train Test  

WLE for 1 class of LGD     339 52 352 60 803 
WLE + en-WLE for 1 class of LGD     678 104 704 126 1612 
NBI for 1 class of LGD     372 60 352 60 844 
NBI +en-NBI for 1 class of LGD     744 120 704 120 1688 
WLE for 3 classes 102 29 112 24 339 52   658 
NBI for 3 classes 51 10 156 32 372 80   733 
WLE + en-WLE for 3 classes 227 56 262 63 811 140   1559 
NBI + en-NBI for 3 classes 102 20 312 64 744 160   1466 
WLE + en-WLE + NBI + en-NBI 519 93 1128 231 2738 480   5189  

Table 6 
Sensitivity (Sen) and specificity (Spe) for the expert labelling image groups of 
enhanced and original together with the averaged (Avg) time spent on anno
tating each image and averaged Intersection over Union (IoU) for those correctly 
classified lesions.  

Image 
Group  

SCC HGD LGD Avg 
(%) 

Avg time 
(s) per 
frame 

Avg 
IoU 
(%) 

Enhanced Sen 0.9906 0.9913 0.9590 98.03 41 84 
Spe 0.9977 0.9699 0.9970 98.82 

Original Sen 0.9626 0.9565 0.9351 95.14 55 79 
Spe 0.9931 0.9451 0.9780 97.21  
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video (10(a)) that is firstly transmitted to a laptop in real time (10c)) 
using a video stream device (StreamCatcher from StarTech.com, 
Northampton, UK). Then the captured screen is processed and displayed 
on another monitor (10(d)) with superimposed detection results. The 
centre red segment on Fig. 10(d) is correctly identified as SCC. This has 
later been confirmed histologically from the specimen resected during 
the same endoscopy procedure. 

4.3. Processing speed 

For processing a clip of video, there are two elements to be consid
ered, one is the processing speed and another the continuousness and 
smoothness of playback of the processed frames. Hence, buffers are 

employed to process and play back in near parallel fashion to take ad
vantages of computer RAM. With a memory of 64GB in this study, it 
appears that the setting of 16 buffers delivers the optimal outcome. 

To deploy a developed system in a clinical setting, both hardware (e. 
g., GPU number, computer memory, and monitor size) and software 
should be considered. A higher number of GPUs, e.g. 2 or 4, will help 
considerably but will also incur a high cost. Hence, a combination of 
both, cutting edge hardware systems and optimised algorithms, appears 
to be the better way forward. Specifically, in Fig. 10, larger monitor sizes 
as depicted in 10(c)(d) will decrease processing speed. 

In this study, Resnet101 is implemented in the system as a backbone 
for the initial feature extraction of videos (1920 × 1080 pixel/frame), 
arriving at 33.46 frames per second (fps). For Resnet50 and Darknet53 

Fig. 7. Examples of delineation results from both enhanced and original images by an expert. The ground truth is close to (d). (a) original images; (b) enhanced 
images; (c) detected region from (a); (d) detected region from (b). Blue=HGD; Green=LGD. (e) ground truth delineated by experts. 

Fig. 8. Illustration of sample images with lesions that are missed or wrongly detected from both enhanced and original image groups by experts. (a) original images; 
(b) enhanced images; (c) detection from original images; (d) detection based on enhanced images; (e) ground truth. Red=cancer, green=LGD, blue=HGD. 
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models, the speeds are 41.43fps and 36.49fps, which are all greater than 
24 fps, the minimum frame rate at that human vision cannot perceive 
motion differences. 

In comparison with original Yolact network [43] where 33.5 fps was 
achieved for processing an image of 550 × 550 pixels with a single Titan 
Xp graphics processing card (GPU), our work employs 2 GPU cards 
(Nvidia GeForce GTX 1080Ti) and realises the similar speed with double 
the size of images (1920 × 1080 pixels). A video clip with classification 
labels superimposed on the video frames is included in Appendix A. The 
confidence threshold is set to be 0.3 in processing this video clip. 

4.4. Explainable aspect of the developed detection model 

Analogous to any other software systems, every decision delegated to 
clinicians calls for clear explanations to ensure its credibility. In this 
fused system (Fig. 2), this is conducted through an array of prototypes (k 
= 32) with each one presenting the activation status of neural network 
neurons. Through the linear combination of these prototypes, segmen
tation masks will be generated. Fig. 11 explains the process where 11(a) 
shows the images with ground truth and 11(c) the prediction. Fig. 11(b) 
displays the first twelve prototypes, with each one being the same size as 
the image itself. Although the number of prototypes can be of any size, it 
appears that large numbers can make many prototypes redundant for 

being just blank as exemplified in Fig. 3. 
Due to the fact that FCNs are translation invariant, when it comes to 

the localisation of an object, those translational variances necessitate to 
be injected back [48] explicitly. In this study, however, with the addi
tion of prototypes, the system learns the way to localise objects via 
different activations in its prototypes as demonstrated in Fig. 11. Since 
Resnet101 puts on a rim of padding, the network is able to track the 
positions of an object and hence is inherently translation variant, the 
advantage that has been taken in the system. Consequently, the pro
totypes can also activate on certain ‘partitions’ of the image as shown 
with the red dashed line in 11(b). By combining using Eq. (1), e.g. plus 
or minus, these partition maps, the network can distinguish between 
different (even overlapping) objects of the same semantic class. There
fore, these prototypes act as an explainable mechanism for the network 
and fire most strongly on objects that are of interest. 

4.4. Out-of-sample generalisation 

Out-of-sample generalization of disease detection is defined as the 
ability of an algorithm to achieve similar performance when applied to a 
completely different institution data or different category dataset [49, 
50]. For test of generalisation, the system has been evaluated in a 
separate data cohort not used for training and development (Tables 4 
and 7). In this study, the developed fusion system is also evaluated using 
images with artefact and with Barrett’s oesophagus, which are consid
ered as normal from classification of precancerous stage point of view. 
Barrett’s oesophagus [51] is a premalignant condition with the risk of 
progression to oesophageal adenocarcinoma. As provided in Table 7 
(WLE-for-1-class and NBI-for-1-class), sensitivity and specificity for these 
images (classified as ‘NML’) are 96.8% and 85.2% for WLE image 
respectively. To evaluate a 3-class system, a clip of Barrett’s oesophagus 
video with 500 frames (1156 × 1912 pixels) is put into a test. For 
1-class training, it constitutes normal images, i.e. with artefact and 
Barrett’s, are part of training whereas for 3-class training, the back
ground regions of each delineated images are considered as normal to 
avoid over-fitting (every lesioned image has a non-lesioned background) 
with less presence of artefact and Barrett’s. Hence, it is expected that 
classification results are poorer than 1-class system with 98 
mis-classified as SCC (n = 6), HGD (n = 2) and LGD (n = 90), leading to 
an accuracy being 81.6% in comparison with 91.1% for WLE and 90.6% 
for NBI (Table 7) for 1-class system. 

Fig. 12 illustrates an example of processing results (selected at every 
200 frames interval from the said video) with 2 frames (arrows) mis- 
classified as LGD. 

5. Discussion 

This work constitutes one of the first to employ fused architecture to 
improve detection accuracy while overcoming the shortcomings of the 
existing AI-enhanced decision support systems. Detection of early 
oesophageal squamous neoplasia remains a challenging task because the 
surface structure and colour appearance of dysplastic oesophageal mu
cosa appear inconspicuous to the human eye. Moreover, colour varia
tions in datasets obtained from different centres predominantly render 
the trained AI-based system only work well with similar datasets when 

Table 7 
The detection results in terms of sensitivity, specificity and accuracy for the deep 
learning systems trained with and without fusion, including WLE, WLE + WLEen 

and WLE + NBI + WLEen + NBIen images respectively. NML=normal. 1-class 
refers to training LGD (+ NML) only; 3-class for SCC, HGD, and LGD (+NML). 
En= enhanced contrast. All the measures are given with standard deviation (±
STD).  

Methods Class Sensitivity  
±STD(%) 

Specificity  
±STD (%) 

Accuracy  
±STD (%) 

WLE for 1-class LGD 75.0 ± 2.2 88.2 ± 1.7 82.7 ± 1.1 
NML 86.7 ± 3.65 80.0 ± 2.4 83.3 ± 0.80 

Fusion: WLE +
WLEen for 1 class 

LGD 80.9 ± 5.85 84.1 ± 4.1 83.0 ± 0.95 
NML 82.7 ± 4.3 96.9 ± 4.35 90.6 ± 0.90 

NBI for 1-class LGD 83.3 ± 1.66 90.9 ± 0.5 87.3 ± 0.79 
NML 90.0 ± 3.33 85.7 ± 1.19 97.7 ± 2.17 

Fusion: NBI +
NBIen for 1-class 

LGD 87.5 ± 2.08 93.2 ± 0.8 90.3 ± 1.05 
NML 92.7 ± 0.90 88.9 ± 0.59 90.6 ± 1.48 

WLE for 3-class SCC 82.4 ± 3.30 95.3 ± 1.07 90.5 ± 2.39 
HGD 74.2 ± 2.91 87.3 ± 1.0 84.6 ± 1.85 
LGD 74.5 ± 2.08 88.3 ± 1.0 83.4 ± 1.32 

Fusion: WLE +
WLEen 

SCC 86.1 ± 2.68 93.1 ± 0.94 90.3 ± 0.80 
HGD 87.0 ± 2.47 90.2 ± 0.89 89.5 ± 0.80 
LGD 83.0 ± 1.48 95.5 ± 1.39 90.3 ± 1.02 

NBI for 3-class SCC 80 ± 0.5 99.3 ± 0.2 97.4 ± 0.2 
HGD 87.5 ± 1.6 87.5 ± 1.1 87.5 ± 0.6 
LGD 86.7 ± 0.8 84 ± 0.85 85.5 ± 0.82 

Fusion: NBI +
NBIen for 3-class 

SCC 80 ± 2.5 99.5 ± 0.05 97.6 ± 0.24 
HGD 89.1 ± 0.78 88.6 ± 1.35 88.7 ± 0.75 
LGD 88.3 ± 2.5 85.7 ± 2.47 87.1 ± 2.5 

WLE + NBI for 3- 
class 

SCC 87.0 ± 2.5 92.6 ± 1.14 91.9 ± 1.57 
HGD 84.3 ± 3.12 93.3 ± 4.01 86.9 ± 1.70 
LGD 85.3 ± 2.41 90.4 ± 3.41 84.2 ± 3.72 

Fusion: WLE +
NBI + WLEen +

NBIen 

SCC 90.5 ± 2.23 94.9 ± 0.74 93.7 ± 0.74 
HGD 85.0 ± 2.36 95.1 ± 1.2 88.3 ± 0.88 
LGD 89.3 ± 2.50 93.2 ± 0.87 91.4 ± 0.86  

Table 8 
The colour differences computed using both ΔEL*a*b* and ΔECAM between each LGD and its surrounding normal mucosa from original WLE and NBI and their enhanced 
counterparts. All measures are accompanied by a standard deviation (± STD). En=Enhanced.   

ΔL Δa* Δb* ΔEL*a*b* ΔLCAM ΔCCAM ΔHCAM ΔECAM(%) p-value 
(t-test) 

WLE 5.76±4.34 6.23±4.21 7.38±4.80 11.60±4.26 4.83±2.91 9.23±4.44 19.30±9.42 13.12±9.30  
WLEen 7.74±4.34 8.48±4.22 8.44±4.80 14.46±3.84 6.62±3.32 12.29±6.23 27.48±14.34 18.35±13.48 0.071 
NBI 8.17±4.60 10.59±1.67 9.50±1.93 17.52±4.74 9.57±6.83 3.73±3.04 6.25±0.94 10.82±6.99  
NBIen 10.23±6.73 16.22±9.76 21.56±6.09 32.53±8.11 12.00±6.95 10.06±7.87 95.32±18.52 33.60±9.02 0.162  
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testing. 
Through the revision of colour appearance for contrast enhancement 

based on human colour vision models, the colour variations between 
different data sources can be limited to a certain extent, since the con
trasted images are yielded under a standard viewing environment of D65 
(average daylight) with unified background information (Table 4), 
aligning contrasted images under similar lighting conditions. In addi
tion, the application of this supervised colour appearance model, CIE
CAM, to augment data sets, alleviating data shortage appreciably. As a 
result, dysplastic regions, mainly suspected or LGD, are much more 
noticeable with colour differences increase from 13.12 to 18.35 in 
ΔECAM for WLE and from 10.82 to 33.60 ΔECAM for NBI,. Diagnosing 
LGD is crucial in identifying patients at risk for developing oesophageal 
cancer to offer them endoscopic surveillance. 

When diagnosing based on enhanced images by an expert clinician, 
not only is the time (41 s) (Table 6) spent on inspecting each frame 25% 
less than on the original image, but also the sensitivity, specificity as 
well as accuracy improved by 3%, 1.5% and 3.5% to being 98%, 98.8% 
and 98.5% respectively for all three histological grades of squamous 
neoplasia. 

Furthermore, with the addition of these colour contrast-enhanced 
images to the training and fusion when testing, the accuracy improves 
from 82.7% to 90.6% for WLE regarding only the LGD class, and to 
91.4% when both WLE and NBI images are applied addressing all three 

histological classes. These results are based on evaluation in an inde
pendent cohort of test dataset. Clinically, the most important aspect is to 
find and identify patients with precancerous alterations of the oeso
phageal mucosa. Promising in this context is that the sensitivity, speci
ficity and accuracy for detecting LGD are increased from 74.5%, 88.3% 
and 83.4% to 89.3%, 95.5% and 90.3% respectively when addressing 
WLE, an improvement by 14%, 7%, and 7% respectively. 

For representing colour appearance, CIECAM is an established 
human vision model simulating human colour perception that is capable 
to adapt different viewing environments when perceiving an object. 
Hence, this can leverage the colour differences between different data
sets acquired from varying research centres and lead to improved pre
diction performance of the developed system as all contrasted image 
frames are created under a standard viewing condition of D65 (average 
daylight). 

In addition, contrasted to the conventional colour augmentation 
technique, whereby the RGB values are changed linearly at a specific 
fixed interval, the employment of CIECAM is not only nonlinear, but also 
true to its original colour. For example, an augmented blue image might 
not contribute considerably as this colour is not present at current 
endoscopic procedure. 

In comparison with the work conducted by Osawa et al. [22] on 
colour enhancement based on flexible spectral imaging, where the 
average increase of ΔEL*a*b* is 8.4 units from conventional 

Fig. 9. Illustration of detection on a clip of endoscopic video where red=’SCC’, blue=’HGD’, green=’LGD’.  
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esophagogastroduodenoscopy (EGD) converting WLE to NBI, the 
contrast in our study has been enhanced by 4.74 and 8.9 units for WLE to 
WLE and WLE to NBI respectively for their published images, demon
strating the comparable effectiveness of computational technique on 
image contrast enhancement. 

Since CIECAM is a standard model and part of built-in Python li
brary, the conversion from RGB space to JCH space can be performed in 
a few milli-seconds. For the developed system in this study, to process a 
clip of videos, the average playing back time after processing stands at 
33.46 frames per second (fps) (29 ms per frame (pf)). Significantly, 
video frames maintain at a high resolution of 1920 × 1080 pixels. At 
present, for clinical practice and testing, the contrasted images are 
generated behind the scene whereas only original frames are displayed. 
Further work will be conducted to show enhanced images as well on the 
fly, which might require another monitor to depict. 

In comparison with recent studies on AI-orientated systems [28–31, 
34–39] (Table 1), this developed system exceeds the SOTA results in 
relation to early detection of squamous cell neoplasia and is probably 
one of the first tangible real-time detection systems for endoscopic 
videos for classification of 3 classes, thanks to the inclusion of contrast 
enhanced images. The deep learning system based on fused contrast 
enhanced images out-performs with sensitivity, specificity and accuracy 
being 88.3%, 94.4% and 91.1% respectively for the classification of 
three histological classes, an increase of 2.8%, 2.3% and 3.4% from the 
outcomes gained without fusion. When only WLE images are employed 
for the detection of LGD, contrast enhancement increases the perfor
mance by 7.7%, 8.7% and 7.9% respectively. For the calculation of three 
classes detection, the result of normal (NML) is not included as NML has 
a much larger proportion of dataset. 

There are a number of limitations in this study. Firstly, this fused 
system is developed using images from only a few centres with limited 
numbers of training images. Newer endoscope types and processors 
might provide higher quality images. Secondly, normal oesophagus is 
set as default in non-annotated areas of training images hence data 
imbalance might have interfered with the model optimization. However, 
in the test set we include a large number of controls with normal 
oesophagus or other diseases (reflux, Barrett’s oesophagus). Superiority 
of the system compared to experts’ judgement cannot be demonstrated 
and this would require prospective clinical studies with targeted bi
opsies. Thirdly, poor quality images with large amounts of artefacts are 
excluded in both training and testing sets which might introduce se
lection bias. Lastly, oesophageal squamous dysplasia and squamous cell 
carcinoma are the main focus in this study whereas images of Barrett’s 
oesophagus are not analysed. Further studies will investigate this fused 
system in diagnosing dysplasia in Barrett’s oesophagus as well as early 
oesophageal adenocarcinoma. 

A strength of this study is the validation in an external independent 
cohort of patients from another centre, whereas the controls have 
included real-world patients with Barrett’s oesophagus, reflux oeso
phagitis, candida oesophagitis and anaemia. 

Different from currently published studies, this system can be 
implemented into a routine clinical setting in an immediate term with 
little alteration to existing endoscopy equipment (second laptop, a 
monitor and a video stream catcher required). The standardisation with 
a defined 24 colour checker facilitates the transfer of the technology to 
other endoscope video providers. The developed AI-system can guide 
endoscopists to take targeted biopsies from suspicious lesions which are 
flagged up on the screen, expectedly leading to minimising the miss rate 
of early neoplastic lesion during routine endoscopy. 

At present, only the attribute of colourfulness of an image is 
considered, which could potentially limit the application ranges as some 
samples might present with little alterations in colourfulness but larger 
changes in other attributes, e.g. lightness. Hence in the future, these 
attributes will be investigated thoroughly. 

6. Conclusion 

In conclusion, this study introduces a fused real-time multi-modal 
multi-class endoscopy system, built upon the state-of-the-art artificial 
intelligence (AI) techniques while assimilating both WLE and NBI im
aging modalities and facilitating detection, delineation (segmentation 

Fig. 10. An illustration of an endoscopy procedure in a darkened endoscopy 
room. (a) The real-time endoscopy video is displayed on a monitor in the 
endoscopy room. (b) The clinician inspects the endoscopy video while per
forming endoscopic procedure. (c) Live streaming from the endoscopic system 
to a laptop which processes the endoscopy data. (d) The detection results are 
superimposed on the original frame and displayed on a 2nd monitor in 
real time. 
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Fig. 11. Illustration of explainable nature of trained system in the form of prototypes. (a) Ground truth. (b) Activations of first 12 prototypes. (c) Detection results 
according to (b). red=’cancer’, blue=’high grade’, green=’suspicious’. Dashed red circle in bottom (b) demonstrates an activated prototype containing partitions. 

Fig. 12. Processing results for a video of Barrett’s oesophagus that is considered as normal in this study. Black arrows indicate the wrong classification.  
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masks) and characterisation of precancerous (low-grade, high-grade) 
and cancerous lesions, all at the same time and all in real time. 

The developed fused system improves the diagnostic performance 
and increases the system generalisation. More significantly, colour 
variations within the datasets obtained from different centres can be 
leveraged using the contrasted images that are enhanced under standard 
D65 viewing conditions. 
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