845 research outputs found

    BPS and non-BPS Domain Walls in Supersymmetric QCD with SU(3) Gauge Group

    Get PDF
    We study the spectrum of the domain walls interpolating between different chirally asymmetric vacua in supersymmetric QCD with the SU(3) gauge group and including 2 pairs of chiral matter multiplets in fundamental and anti-fundamental representations. For small enough masses m < m* = .286... (in the units of \Lambda), there are two different domain wall solutions which are BPS-saturated and two types of ``wallsome sphalerons''. At m = m*, two BPS branches join together and, in the interval m* < m < m** = 3.704..., BPS equations have no solutions but there are solutions to the equations of motion describing a non-BPS domain wall and a sphaleron. For m > m**, there are no solutions whatsoever.Comment: 10 pages LaTeX, 5 postscript figure

    Perturbative Computation of the Gluonic Effective Action via Polyaokov's World-Line Path Integral

    Full text link
    The Polyakov world-line path integral describing the propagation of gluon field quanta is constructed by employing the background gauge fixing method and is subsequently applied to analytically compute the divergent terms of the one (gluonic) loop effective action to fourth order in perturbation theory. The merits of the proposed approach is that, to a given order, it reduces to performing two integrations, one over a set of Grassmann and one over a set of Feynman-type parameters through which one manages to accomodate all Feynman diagrams entering the computation at once.Comment: 21 page

    The Zero-Removing Property and Lagrange-Type Interpolation Series

    Get PDF
    The classical Kramer sampling theorem, which provides a method for obtaining orthogonal sampling formulas, can be formulated in a more general nonorthogonal setting. In this setting, a challenging problem is to characterize the situations when the obtained nonorthogonal sampling formulas can be expressed as Lagrange-type interpolation series. In this article a necessary and sufficient condition is given in terms of the zero removing property. Roughly speaking, this property concerns the stability of the sampled functions on removing a finite number of their zeros

    Domain Walls Zoo in Supersymmetric QCD

    Full text link
    Solving numerically the equations of motion for the effective lagrangian describing supersymmetric QCD with the SU(2) gauge group, we find a menagerie of complex domain wall solutions connecting different chirally asymmetric vacua. Some of these solutions are BPS saturated walls; they exist when the mass of the matter fields does not exceed some critical value m < m* < 4.67059... There are also sphaleron branches (saddle points of the ebergy functional). In the range m* < m < m** \approx 4.83, one of these branches becomes a local minimum (which is not a BPS saturated one). At m > m*, the complex walls disappear altogether and only the walls connecting a chirally asymmetric vacuum with the chirally symmetric one survive.Comment: 23 pages, LaTeX, 11 figure

    Single photoeffect on helium-like ions in the non-relativistic region

    Full text link
    We present a generalization of the pioneering results obtained for single K-shell photoionization of H-like ions by M. Stobbe [Ann. Phys. 7 (1930) 661] to the case of the helium isoelectronic sequence. The total cross section of the process is calculated, taking into account the correlation corrections to first order of the perturbation theory with respect to the electron-electron interaction. Predictions are made for the entire non-relativistic energy domain. The phenomenon of dynamical suppression of correlation effects in the ionization cross section is discussed.Comment: to be published in Physics Letters

    Can One-Run-Fixed-Arrhenius Kerogen Analysis Provide Comparable Organofacies Results to Detailed Palynological Analysis? A Case Study from a Prospective Mississippian Source Rock Reservoir (Bowland Shale, UK)

    Get PDF
    Organofacies analysis, a fundamental component within source rock appraisal based on the study of kerogen within a source rock, is typically produced from microscopy (palynological) and geochemical (kerogen kinetic) data, both of which are costly to acquire. One-Run-Fixed-Arrhenius (ORFA) kerogen kinetic analysis based on Rock–Eval pyrolysis offers a substantially cheaper kinetic dataset. Here, ORFA and palynological analyses are compared in organofacies characterization of a prospective Mississippian source rock reservoir (Bowland Shale, UK). Two-end-member organofacies were determined based on the abundance of the 56 kcal/mol activation energy peak derived from ORFA data: absence ( 15%) indicating ‘organofacies B’ containing the highest proportion of sporomorphs (Type II kerogen). A mud-dominated slope setting for the rock reservoir was also used to test the accuracy of organofacies analysis in determining depositional environment. Organofacies A found within lithofacies deposited from dilute waning density flows and hemipelagic suspension settling occurred between shelf edge, slope and basin. Organofacies B found within lithofacies deposited from dilute waning density flows, and low-strength cohesive debrites occurred only within the lower slope. This study demonstrates that ORFA kerogen kinetic analysis provides comparable net results to palynological analysis, enabling cheaper and faster organic characterization during initial source rock appraisal. However, caution must be exercised in drawing interpretations as to biological source(s), organic matter mixing and preservation state(s) without additional investigation using data from detailed palynological analysis

    Scintillation and charge extraction from the tracks of energetic electrons in superfluid helium-4

    Full text link
    An energetic electron passing through liquid helium causes ionization along its track. The ionized electrons quickly recombine with the resulting positive ions, which leads to the production of prompt scintillation light. By applying appropriate electric fields, some of the ionized electrons can be separated from their parent ions. The fraction of the ionized electrons extracted in a given applied field depends on the separation distance between the electrons and the ions. We report the determination of the mean electron-ion separation distance for charge pairs produced along the tracks of beta particles in superfluid helium at 1.5 K by studying the quenching of the scintillation light under applied electric fields. Knowledge of this mean separation parameter will aid in the design of particle detectors that use superfluid helium as a target material.Comment: 10 pages, 8 figure

    One-loop results for the quark-gluon vertex in arbitrary dimension

    Get PDF
    Results on the one-loop quark-gluon vertex with massive quarks are reviewed, in an arbitrary covariant gauge and in arbitrary space-time dimension. We show how it is possible to get on-shell results from the general off-shell expressions. The corresponding Ward-Slavnov-Taylor identity is discussed.Comment: 6 pages, LaTeX, including 1 figure, uses epsfig, requires espcrc2.sty, contribution to the Zeuthen Workshop "Loops and Legs in Gauge Theories" (Bastei, Germany, April 2000

    Effects of Electron-Electron and Electron-Phonon Interactions in Weakly Disordered Conductors and Heterostuctures

    Full text link
    We investigate quantum corrections to the conductivity due to the interference of electron-electron (electron-phonon) scattering and elastic electron scattering in weakly disordered conductors. The electron-electron interaction results in a negative T2lnTT^2 \ln T-correction in a 3D conductor. In a quasi-two-dimensional conductor, d<vF/Td < v_F/T (dd is the thickness, vFv_F is the Fermi velocity), with 3D electron spectrum this correction is linear in temperature and differs from that for 2D electrons (G. Zala et. al., Phys. Rev.B {\bf 64}, 214204 (2001)) by a numerical factor. In a quasi-one-dimensional conductor, temperature-dependent correction is proportional to T2T^2. The electron interaction via exchange of virtual phonons also gives T2T^2-correction. The contribution of thermal phonons interacting with electrons via the screened deformation potential results in T4T^4-term and via unscreened deformation potential results in T2T^2-term. The interference contributions dominate over pure electron-phonon scattering in a wide temperature range, which extends with increasing disorder.Comment: 6 pages, 2figure
    corecore