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1. STATEMENT OF THE PROBLEM 

The classical Kramer sampling theorem provides a method for 
obtaining orthogonal sampling theorems [5, 13, 15, 21]. The statement of 
this general result is as follows. Let K be a complex function defined on 
D x / , where / C IR is an interval and D is an open subset of R, and such 
that for every t e D the sections K(- ,t) are in 2?2(/). Assume that there 
exists a sequence of distinct real numbers { í J c A indexed by a subset of 
Z, such that {K(x, tn)} is a complete orthogonal sequence of functions for 
2?2(7). Then for any / of the form 

f(t) = i F(x)K(x, t)dx te D, (1) 
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where F e 2?2(/), we have 

/(O = £/(í»)S»U), teD, (2) 
n 

with 

f, K(x, t)K(x, L) dx 
Sn(t) := Jl

 r ' — . (3) 
Jj \K(x, t„)\¿ dx 

The series in (2) converges absolutely and uniformly on subsets of D where 
\\K{-, OllsV) *s bounded. 

For instance, taking / = [—71,71], K(x, t) = elíx and {t„ = n}nez, we get 
the well-known Whittaker-Shannon-Kotel'nikov sampling formula 

00 , , 

E sinit — n) 
fin) ( / , ( e R , 

n(t — n) 
n=—co 

for functions in L2(IR) whose Fourier transform has support in [—n, n]. 
Now, if we take / = [0,1], K(x, t) = */xijv(xt) and {t„}, the sequence of 

the positive zeros of the Bessel function/v of vth order with v > — 1, then 

for every / of the form f(t) = f0 F(x)*/xijv(xt)dx, where F e L2(0,1) 
(see [13, p. 83]). 

The Kramer sampling theorem has played a very significant role in 
sampling theory, interpolation theory, signal analysis and, generally, in 
mathematics (see, e.g., the survey articles [3, 4]). 

In [6], an extensión of the Kramer sampling theorem has been 
obtained to the case when the kernel is analytic in the sampling parameter 
t e D c C Namely, assume that the Kramer kernel K is an entire function 
for any fixed x e I, and that the function h(t) = f¡ \K(x, t)\2dx is locally 
bounded on D c C. Then any function / defined by (1) is an entire 
function, as are all the sampling functions (3). 

A straightforward discrete versión of Kramer's theorem can be 
obtained. Namely, let K(n,z) be a kernel such that, as function of n, 
the sequence {K(n, z)} e t2{T) for any z e D c C, where I is a countable 
index set. Assume that, for a suitable sequence {z„} c D, the sequence 
{K(-,Zn)} is an orthogonal basis for Í2{T). Then, any function of the 
form/(z) = X^reei

 cnK{n, z), where {c„} e t2{T), can be expanded by means 
of a sampling series like (2) (see [8]). As examples of discrete kernels 
for which a sampling formula works we can consider discrete kernels 



K{n,z) :=P„(z), n e N0 := N U {0} and Z E C , where {P„(z)}neVo denotes 
a sequence of orthonormal polynomials associated with an indeterminate 
Hamburger or Stieltjes moment problem (see [8, 9] for the details). 

The Kramer sampling theorem has been the cornerstone for a 
significant mathematical literature of sampling theory associated with 
differential or difference problems. See, among others, [1, 5, 8, 9, 13, 21] 
and the references therein. 

Thus an abstract analytic formulation of the Kramer sampling theorem 
raises in a natural way: Let °M be a complex, separable Hilbert space with 
inner product (•, •)%, and let {xn}™=l be a Riesz basis for °M. Suppose K 
is a 5íf-valued function defined on C. For each x e °M, define the function 
fx(z) = {K{z),x)x on C, and let °MK denote the collection of all such 
functions^i. Furthermore, each element in 1CK is an entire function if and 
only if K is analytic on C In this setting, an abstract versión of the analytic 
Kramer theorem is obtained assuming the existence of two sequences, 
{z„}~=1 in C and {an}^=1 in C\{0}, such that K(z„) = anxn for each n e N. 
Namely, for any^i e °MK we have 

fx(z) = ^2fx(zn)——, Z E C , 

where S„(z) = (K(z),y„), n e N, being { j » } ^ the dual Riesz basis of 
{xn}^=l (see sections 2 and 4 infra for all the details). 

A challenging problem is to give a necessary and sufficient condition to 
ensure that the above sampling formula can be written as a Lagrange-type 
interpolation series, that is 

°° P(z) 
fx(z) = y 7 * ( z j - , ze€, 

^ (Z- Z^PiZn) 

where P denotes an entire function having only simple zeros at all the 
points of the sequence {z»}^Lr Roughly speaking, the aforesaid necessary 
and sufficient condition concerns the stability of the functions belonging 
to the space 1CK on removing a finite number of their zeros; this is an 
ubiquitous algebraic property in the mathematical literature (see section 3 
infra) and it will be called the zero-removing property along the article. 

Let us consider the following toy example: Given a basis {e!,e2} in C2, 
for the kernel K(z) := z2(e2 — ex) + ex consider the corresponding space 
°MK, which coincides with {az2 + b \ a, b e C}. Obviously, this space has not 
the zero-removing property: if we remove a zero from an element in 1CK 

the resulting polynomial does not belong to °MK. Besides, the sampling 
formula/(z) = / ( 0 ) ( l — z2) + / ( l ) z 2 , which holds in °MK cannot be written 
as a Lagrange interpolation formula. The study of all these topics will be 
carried out throughout the remaining sections. 



2. SOME PRELIMINARES ON THE SPACE %K 

Suppose we are given a separable complex Hilbert space X and an 
abstract kernel K which is nothing but a 5íf-valued function on C. Set 
fx(z) := {K{z),x)x and denote by °MK the collection of all such functions 
fx, x e 1C. It is a reproducing kernel Hilbert space (RKHS) coming from 
the transforms K(z), z e C, and corresponding to the reproducing kernel 
(z, w) H-> {K{z),K{w))x. Notice that the mapping ST given by 

fe B x H^> fx e 1ÍK (4) 

is an antilinear mapping from 1C onto 1CK (henceforth we omit the 
subscript x for denoting the elements in 1CK)- The mapping W is injective 
if and only if the set {K(z)}ZG<£ is a complete set in °M. In particular, if there 
exists a sequence {zn}^=l in C such that {K(zn)}™=l is a Riesz basis for °M, 
then W is an antilinear isometry from 1C onto 1CK- Recall that a Riesz basis 
in a separable Hilbert space °M is the image of an orthonormal basis by 
means of a boundedly invertible operator. Any Riesz basis {xn}^=l has a 
unique biorthonormal (dual) Riesz basis {yn}™=\> i-e., {xn,ym)x = 3n¡m, such 
that the expansions 

x = 22^x'yn^ X « = /M'x«}x:y« 

hold for every x e °M (see [20] for more details and proofs). 
The convergence in the norm || • ||^x implies pointwise convergence 

which is uniform on those subsets of C where the function z \-+ | |^(z) | |x 

is bounded. 
Like in the classical case the following result holds: The space °MK is a 

RKHS of entire functions if and only if the kernel K is analytic in C [19, 
p. 266]. Another characterization of the analyticity of the functions in °MK 

is given in terms of Riesz bases. Suppose that a Riesz basis {xn}^=l for °M is 
given and let {jB}~=1 be its dual Riesz basis; expanding K(z), for each fixed 
z e C , with respect to the basis {xn}^=l we obtain 

K(z) = ^2l{K{z),yn)w;xn, 

where the coefficients {K{z),yn)x as functions in z are in °MK. The following 
result holds: The space 1CK is a RKHS of entire functions if and only if all 
the functions 

SJz) := (K{z),yn)x, z e C (5) 

are entire and ||^(-)llx is bounded on compact sets of C (see [11]). 



3. THE ZERO-REMOVING PROPERTY 

In this section, we introduce the zero-removing property for classes of 
entire functions. 

Definition 1 (Zero-Removing Property). A set sí of entire functions has 
the zero-removing property (ZR property hereafter) if for any g e si and 
any zero w of g the function g(z)/(z — w) belongs to si. 

The ZR property is ubiquitous in mathematics; for instance, the set 
2/V(C) of polynomials with complex coefficients of degree less or equal 
N has the ZR property. Another more involved examples sharing this 
property are: 

• The entire functions in the Pólya class have the ZR property [2, p. 15]. 
Recall that an entire function E(z) is said to be of Pólya class if it has no 
zeros in the upper half-plane, if \E(x — iy)\ < \E(x + iy)\ for y > 0, and 
if \E(x + iy)\ is a nondecreasing function of y > 0 for each fixed x. 

• The entire functions in the Paley-Wiener class PWn of bandlimited 
functions to [-%,%], that is, PW% := {f e 22(IR) n C(JR) : s u p p / c 
[—71,71]}, where / stands for the Fourier transform of / , satisfy the ZR 
property; it follows from the classical Paley-Wiener theorem [20, p. 101], 
which says that this space can be written as PWn = [f entire function : 
I/U) I < Aenlzl,f\K e 2?2(IR)}. From this characterization the ZR property 
immediately comes out. 

• In general, de Branges spaces 7({E) with strict de Branges function E 
have the ZR property [2, p. 52]. Let E be an entire function verifying 
\E(x — iy)\ < \E(x + iy)\ for all y > 0. The de Branges space °M{E) is the 
set of all entire functions F such that 

and such that both ratios F/E and F*/E, where F*(z) :=F(z), are of 
bounded type and of non-positive mean type in the upper half-plane. 
The structure function or de Branges function E has no zeros in the 
upper half plañe. A de Branges function E is said to be strict if it has 
no zeros on the real axis. We require that F/E and F*/E be of bounded 
type and nonpositive mean type in C+ . A function is of bounded type if 
it can be written as a quotient of two bounded analytic functions in C+ 

and it is of nonpositive mean type if it grows no faster than eey for each 
s > 0 as y —>- oo on the positive imaginary axis {iy : y > 0}. Note that the 
Paley-Wiener space PWn is a de Branges space for the structure function 
En(z) = exp(—\nz). 



Assume that the space XK in section 2 comes from a polynomial kernel 
K with coefficients in 1C; concerning the ZR property in 1CK, the following 
result holds: 

Theorem 1. The space °MK associated with a polynomial kernel K(z) := 
5Z»=o P«Z"> where pn e °M and pN ^ 0, has the ZR property if and only if the set 
{po,pi,... ,pN} is linearly independent in °M. 

Proof. Consider f(z) = aNzN + • • • + a\z + a® e °MK with aN ^ 0; there 
exists x e °M such tha t / ( z ) = (K(z),x) and, consequenüy, a¡ = (pj,x) for 
j = 0 ,1, . . . ,N. If the space °MK has the ZR property and ot0,oti,... ,otN are 
the roots of the polynomial / then the constant aN and the polynomials 
aN(z — xN), aN(z — <xN)(z — ajv-i),. . . , aN(z — <xN)(z — a^-i) • • • (z — ai) 
belong to °MK. Let b0, b\,..., bN e C such that 

bNpN + bN-ipN-i H h b0po = 0. (6) 

The vector (bN, • • •, ¿o) is orthogonal in CAr+1 to any vector (cN,..., co) e 
CAr+1 with cNzN + • • • + c0 e °MK. As a consequence, since aN e °MK, b0aN = 0, 
which implies that b0 = 0. Analogously, since aN(z — aN) belongs to °MK 

we have that aNb\ — (aNotN)b0 = 0 and consequenüy b\ = 0. Proceeding 
iteratívely it is straightforward to obtain that b% = • • • = bN_\ = 0; finally, 
from (6) we conclude that bN = 0. 

Now suppose that the set {p0,pi,... ,pN} is linearly independent 
in 1C. In this case, the mapping O : 1C —>- CAr+1 given by O(x) = 
((pQ,x),...,(pN,x)) is surjectíve. As a consequence, any complex 
polynomial of degree less than or equal to N belongs to °MK. Let 
f(z) = aNzn + • • • + a\z + oo e °MK and let w e C be a root of / . Henee, 
f(z)/(z — w) = c0 + c\z + • • • + cN-\zN~l is a polynomial of degree less 
than or equal to N — 1. Since O is onto there exists x e °M such that 
O(x) = (C{), c\,..., c¡v_i,0). From the definition of O, we conclude that 
f(z)/(z — w) = (K(z),x), that is, the funcüon/(z)/(z — w) e ltK. D 

Giving a necessary and sufficient for a general analytíc kernel K 
remains as an open problem. It is worth to mentíon that a straightforward 
applicatíon of Cauchy-Schwarz inequality shows that entíre functíons in °MK 

inherit the finite order and the type of the vector-valued entire funcüon K 
provided it has finite order. 

As examples of spaces °MK where the ZR property does not hold let us 
mentíon the following: 

• Consider the spaces °MKi, i = 1,2, associated with the analytic kernels K{ : 
C ^ L2[0,7i] defined by Ki(z)[x] :=sinzx and K2(z)[x] :=coszx. The 
space XKl corresponds to the space of odd bandlimited functions in PWn 



while °MKt corresponds to the space of even bandlimited functions in 
PWn. It is clear that the ZR property does not hold in these spaces. 
Let K : C -> °M be an analytic kernel such that K(zo) = 0 for some 
z0 e C Then all the functions in the associated space °MK have a zero at 
z0 and the ZR property does not hold in °MK. Indeed, l e t / be a nonzero 
entire function in 1CK and let r denote the order of its zero ZQ. The 
function/(z)/(z — z0)r is not in °MK since it does not vanish at z0. 
A little more sophisticated example is the following: For m > 2 let 
Km : C -> L2[—71,7i] be defined as ^ ( z ) = -^elz™ e L2[—n, n]. It is 
straightforward to show that K^ is an analytic kernel; the corresponding 
space °MKm does not have the ZR property. Indeed, expanding Km{z) as 
power series around the origin we obtain 

[KmizWx) = V K-^— = 1 + iXZm - —— - i—— + • • • . 
tí kl 2! 3! 

Thus, for any function f(z) = (^¡(z), F) with î  e L2[—n, TI] we have 

/w = E C*2 , 

k=0 

where cA = ((ix)k/kl, F), k = 0 , 1 , . . . . Let G e L\-%, TI]\{0} be such that 
G is orthogonal to K(0) and let g(z) = {Km(z), G). Since {K(0), G) = 0 
we have g(0) = 0. Henee, the Taylor expansión of g(z)/z around the 
origin has the form 

£^ = d,zm-1 + ckz2m-1 + ••• 
z 

where dk = ((ix)k/kl, G), k = \,2, Since G is not the zero function 
the function g(z)/z does not belong to °MKm. 

4. LAGRANGE-TYPE INTERPOLATION SERIES 

In this section, we introduce the analytic Kramer kernels K for which 
a nonorthogonal sampling theorem in 1CK holds. We prove a converse 
result: From a sampling formula in °MK we deduce when K is an analytic 
Kramer kernel. Finally, we prove the main result: a necessary and sufficient 
condition ensuring that the Kramer sampling result can be expressed as a 
Lagrange-type interpolation series. 

4.1. The Abstract Kramer Sampling Result 

Consider the data 

W t i e C and K}~ x e C\{0}. (7) 



Definition 2 (Analytic Kramer Kernel). An analytic kernel K : C —> Ht 
is said to be an analytic Kramer kernel (with respect to the data (7)) if it 
satisfies K(z„) = a„x„, n e N, for some Riesz basis {xn}™=l of °M. 

A sequence {S»}^ of functions in the space °MK is said to have the 
interpolation property (with respect to the data (7)) if 

Thus, an analytic kernel K is an analytic Kramer one if and only if the 
sequence of functions {Sn}^=l in °MK given by (5), where { j » } ^ is the dual 
Riesz basis of {xn}™=l, has the interpolation property with respect to the 
same data (7). 

Concerning the existence of analytic Kramer kernels, it has been 
pro ved in [11] that, associated with any arbitrary sequence of complex 
numbers {z„}™=l such that lim^oo \zn\ = +oo, there exists an analytic 
Kramer kernel K. 

Under the notation introduced so far an abstract versión of the 
classical Kramer sampling theorem sampling [15] holds in 1CK; this is a 
slight modification of a sampling result in [14]. For notational purposes 
we include its proof. 

Theorem 2 (Kramer Sampling Theorem). Let K : C —> 1C be an analytic 
Kramer kernel, and assume that the interpolation property (8) holds for some 
sequences {z„}^=1 in C and {an}^=1 in C\{0}. Let °MK be the corresponding RKHS 
of entire functions. Then any f e °MK can be recovered from its samples {/(ZK)}^LI 

by means of the sampling series 

f(z) = f^fizn) ^ , ze<£, (9) 

where the reconstruction functions Sn are given in (5). The series converges 
absolutely and uniformly on compact subsets o / C 

Proof. First, notice that lim^oo \z„\ = +oo; otherwise the sequence 
{zn}™=\ contains a bounded subsequence and, henee, the entire function 
S„ = 0 for all n e N, which contradiets (8). The anti-linear mapping W 
given by (4) is a bijective isometry between °M and °MK. As a consequence, 
the functions {S„ = <¿f{yn)}'^=\ form a Riesz basis for °MK; let {Tn}^=l be its 
dual Riesz basis. Expanding a n y / e °MK in this basis we obtain 

oo 

f{z) = YJ{f>Tn)XKSn{z). 
n=\ 



Moreover, 

K(Zn) \ f(Zn) 
(f> Tn)xK — (x, x„)'X — ( , x) — . (10) 

\ n I 'K n 

Since a Riesz basis is an unconditional basis, the sampling series will be 
pointwise unconditionally convergent and henee, absolutely convergent. 
The uniform convergence is a standard result in the setting of the RKHS 
theory since z H> \\K(z)\\% is bounded on compact subsets of C. D 

Riesz bases theory (see, e.g., [20]) assures the existence of two positive 
constants 0 < A < B such that 

A\\f\\lK < J2 \f(zn)/anf < B\\f\\lK for all / e ltK, (11) 

that is, ||/||s := ( X ^ i |/(z»)/«J2) defines an equivalent norm in °MK. 
Following [12], we can say that the data (7) is a sampling set for °MK; 
here the sequence of samples belongs to a weighted í2 space. In [12], the 
authors characterize the reproducing kernel Hilbert spaces having a fixed 
sampling set. 

The Whittaker-Shannon-Kotel'nikov sampling formula in PWn 

becomes a particular case of formula (9) in Theorem 2. Indeed, any 
/ e PWn can be written as 

i r ~ i ézw -\ 
f(z) = - = ¡ f(w)e'zwdw = (^=,f) , z e C . 

V271 J-n 
271 i h\-%,%\ 

The Fourier kernel K(z) := ^= e L2[—iz,ii] is an analytic Kramer kernel 

for the data {z„ = n}nez and {a„ = l}„ex- In this case, as {emw/\/2ñ}„ex is 
an orthonormal basis for L2[—n, TI] we get 

Sn(z) = ^ - ( e - . e ' - ) ^ ^ = S Í " 7 l U " , n ) , z e C. 
2n TI(Z — n) 

As a consequence, we obtain the WSK sampling formula in PWn: 

fM = t finS-^f^, «SC. (12) 
•*—' n(z — n) 

n=—co 

The series converges absolutely and uniformly on horizontal strips of the 
complex plañe. 

It is worth to remark that a kernel K can be an analytic Kramer kernel 
with respect to different data (7). For instance, the Fourier kernel is also 



an analytic Kramer kernel with respect to the data {z„ = n + a}„eZ where 
a e IR and {a„ = l}„ex- More generally, it is an analytic Kramer kernel with 
respect to any data {t„}nez C IR and {a„ = l}„ez, where the points t„ satisfy 
Kadec's condition supre \t„ — n\ < 1/4 since the sequence {eltnW/*/2ñ}nG% is 
a Riesz basis for L2[—TL,TL] [20, p. 42]. 

4.2. A Converse Result 

An interesting converse problem is to decide whether a sampling 
formula as (9), pointwise convergent in 1CK, implies the Kramer kernel 
condition in definition 2 for K. From formula (9) in Theorem 2 we derive 
that: 

• From (5), for each z e C , the sequence {S»(z)}Sli e £2(N). 
• The sequence {f (^n) / an}^=l belongs to £2(N) for a n y / e °MK, and 
• X ^ i a»S„(z) = 0 for all z e C and { a » } ^ e £2(N) implies ot„ = 0 for all 

n e N, due to the uniqueness of a Riesz basis expansión in the RKHS 

It is worth to point out that these conditions are also sufficient to prove 
that K is an analytic Kramer kernel. 

Theorem 3. Let °MK be the range of a mapping W as in (4) considered as 
a RKHS with reproducing kernel k(z,w) = {K(z),K(w))%. Let {Sn}^=1 be a 
sequence in °MK such that {Sn(z)}^=1 belongs to £2(N) for each z e C Suppose that 
the following conditions are fulfilled: 

(i) Y^=\ a» S„(z) = 0 for all z e C and {ttn}™=\ in ¿2(N) implies ot„ = 0 for 
all n. 

(ii) There exist sequences {z„}™=l in C and {an}^=i in C\{0} such that 

|/UJ|°° e £ 2 ( N ) a n d f(z) = J2f(Zn)^> for any y e ^ 

where the sampling series is pointwise convergent in C 

Then, the sequence {Sn}^=1 is a Riesz basis for °MK and the kernel K of the 
mapping W evaluated at z e C can be expressed as K(z) = X ^ i Sn(z) yn, where 
{yn}^=\ is the dual Riesz basis of the Riesz basis {xn = "¿T^1 (Sn)}^=1 in °M. In 
particular, K(zn) = anyn for any n e N . 

Proof. By defining k(z, w) := X^li S„(z)S„(w), we obtain a positive 
definite function which defines a RKHS fe, such that fe c CMK, Condition (i) 
implies that the sequence {S»}^ is an orthonormal basis for fe (see [IV]). 



Now we prove that X = XK and that the identity mapping X °->- XK is 
continuous. Take / e XK, by condition ii), the sequence {f (zn) a~l}™=l is 
in £2(N). As a consequence, the series '52™=if(zn)a~1Sn converges in the 
norm of X. By the reproducing kernel property, we have that the series 
X^^Li/(z»)aK15B(z) is pointwise convergent. Comparing this with what we 
get from the sampling formula f o r / we deduce t h a t / = '52™=if(zn)a~1Sn, 
where the convergence is in X and, consequently, / efe. 

Next we show the continuity of the identity mapping by applying the 
closed graph theorem. Indeed, let {/»}Sli be a sequence such that / j —>-/ 
in ft and^j -> g in XK as n -> oo. Using the reproducing property in both 
XK and Je, for z 6 C we have 

\fn(z)-f(z)\<\\fn-f\\%J~k(z,z); 

\fn(z) - g(z)\ < ||/„ - g\\XK y/k(z,z). 

Therefore, lim„^O0/j(z) = f(z) = g(z) for each z e C , and h e n e e / = g. 
Since it is also surjective, we infer that the norms || • \\%K and \\ • \\% 

are equivalent from the open mapping theorem. As a consequence, the 
orthonormal basis {S„}™=1 in fe is a Riesz basis for XK. 

Assuming that the mapping ST is one-to-one, the sequence {x„ = 
^-1(S»)}^Li is a Riesz basis for X; denote by { j » } ^ its dual Riesz basis. 
Expanding K(z) with respect to {yn}^=\, for each fixed z e C w e obtain 

K(z) = ^2{K(z),xn)'Xyn = y^S„(z) yn, 

that is, the required expansión for K(z). 
Notice that the interpolatory condition S„(zm) = amSn>m comes out of a 

direct application of condition (ii) to S„, followed by condition (i). 
As to the case when, a priori, W is not known to be one-to-one, let 

{xn}^=\ be a sequence in X with P(x„) ^ 0 for all n, where P denotes 
the orthogonal projection onto the closed subspace (KerST)1. Consider 
S„ = 'J(xn) e XK, and suppose that these functions satisfy the hypotheses 
in Theorem 3. In this case, {Sn}^=l is a Riesz basis for XK. Consequently, 
since S„ = ?f[P{xn)] and ^lP(Ker?) = ®> w e °t>tain that {P(Xn)}™=1 is a Riesz 
basis for PCX) = (KerST)1. The result comes out taking into account the 
orthogonal sum X = (Ker3")x © (Keríf). D 

4.3. Lagrange-Type Interpolation Series 

A more difficult question concerns whether the sampling expansión 
(9) can be written, in general, as a Lagrange-type interpolation series. 



For instance, for / e PWn the WSK formula (12) can be written as the 
Lagrange-type interpolation series 

00 P(z) 
f(Z)=J2f(nh—T¿TT> ze<c> ¿-~l (z — n)P'(n) 

n=— 00 

by taking P(z) = (sinnz)/n, an entire functíon having only simple zeros 
a t Z . 

The case where the sequence {xn}™=l in Definition 2 is an orthonormal 
basis for °M was studied in [7]: A necessary and suficient condition involves 
the ZR property Next, we prove that the same necessary and sufficient 
condition holds in the general case of analytic Kramer kernels K involving 
Riesz bases. 

Theorem 4. Let °MK be a RKHS of entire functions obtained from an analytic 
Kramer kernel K with respect to the data {zn}^=1 C C and {an}^=1 e C\{0}, 
that is, K(Zn) = an xn, n e N, for some Riesz basis {xn}^=1 for °M. Then, the 
sampling formula (9) for °MK can be written as a Lagrange-type interpolation series 

00 P(z) 
f(z) = J2f(Znh \i^—v *eC, (13) 

^ (Z- Zn)P'(Zn) 

where P denotes an entire function having only simple zeros at {zn}^=1 if and only 
if the space °MK satisfies the ZR property. 

Proof. For the sufficient condition we have to prove that sampling 
formula (9) can be written as a Lagrange-type interpolation series (13) 
for some entire functíon P. First, we prove that the only zeros of the 
sampling functíon S„ are given by {zr}r-tn. Suppose that S„(w) = 0, then by 
hypothesis the function S„(z)/(z — w) is in °MK. Henee, the functíon 

-Sn(z) = Sn(z) H Sn(z) 
z — w z — w 

also belongs to °MK. If w^ {zr}r-tn, the functíon ^^S„(z) in °MK vanishes at 
the sequence {zr}^= 1 which implies that S„ = 0, to give a contradictíon. In 
addition, the zeros of S„ are simple; indeed, suppose that zm is a múltiple 
zero of S„. Proceeding as above, the function ^^Sniz) belongs to °MK and 
vanishes at {zr}^i which again implies that S„ = 0. 

Consequently, choosing an entire functíon Q having only simple zeros 
at {zn}™=l, for each n e N there exists an entire functíon A„ without zeros 
such that (z — z„)S„(z) = Q(z)A„(z), z e C. Next, we prove that there exists 
an entire functíon A without zeros and a sequence {ffB}™=1 in C\{0} such 



that A„(z) = anA(z) for all Z E C . For m ^ n the function ^Sn(z) in XK 

has its zeros at {zr}r-tm. Thus, the sampling formula (9) gives 

¿n\Z) = [\Zm Zn)¿„\Zm)i > Z ^ ^ -
Z Zfti (X'fíi 

Fixing m = 1, we conclude that A„(z) = onA(z) where A = Ai and an = 
(zi - zB)5;(z1) + 0 for n e N\{1} and ax = 1. Henee, 5„(z) = ff"^w for 
z^ z„ and 5„(z„) = a„ = o-„()/(z„)A(zB). Substituting in (9) we obtain the 
Lagrange-type interpolation series (13) where P(z) = A(z)Q(z). 

For the necessary condition, assume that the sampling formula in 1CK 

takes the form of a Lagrange-type interpolation series (13). Given g e °MK, 
there exists x e °M such that g(z) = (K(z), x), z e C . Assuming that g{w) = 
0, we have to prove that the function g(z)/(z — w) belongs to °MK. The 
sampling expansión for g at w gives 

yg(Zn)—^— = 0. (i4) 
n=i. 

We distinguish two cases: 

(i) w e <E\{zn\n=v ^ p(w) ¥= 0, from (14) we obtain 

y ] á ' ( z » ) 7 — , . P / , v=o-
^ (w- zn)P'(z„) 

Thus, 

g(z) =}^g(zn) _ -l^g(Zn)-
(z-Zn)P'(zn) f - f (tÜ-zJP'iZn) 

n=\ 

(z-w)¿_^g{zn) — 
P'(Zn) (z-zJiZn- V)) 

Therefore, the entire function G{z) := g(z)/(z — w) can be recovered from 
its samples at {zn}^=l through the formula 

00 P(z) 
G(z) = y G ( z „ ) — , z e C . (15) 

Moreover, the function G is in °MK because G(z) = (K(z),y)%, where y e 
°M has the expansión y = X^=i (y> xn)yn with respect to the dual Riesz basis 



Ij»}^i °f {xn}™=\> where the coefficients are given by 

1 ]°° 
(y,Xn)-=- =(x,Xn)\ e¿2(N). 

zn-w J n=1 

Indeed, sampling formula (13) for S„ gives S„(z) = a„,_ P\Zp,(z •, • Henee, by 
using the biorthogonality (x„,y„) = 3n>m, we obtain 

(K{z),y) = Y S ^ ^ = G{z), z e C , 

where we have used (15), and the result that (x, x„) = g(z„)/a„, n e N. 

(ii) w = zm for some m e N. As g{zm) = 0, the sampling expansión 
for g reads 

g(z) = > g(zn) , z e i . 
¿ í (*-z»)¿"(z») 

Setting P(z) = (z - z J Q ^ z ) we have P'(z) = Q^iz) + {z- zOT)Qw(z) and, 
henee, 

p'r •, _\(yzk-zm)Qm{Zk) ifk^m 

[Qmizm) if k = m 

Henee, 

- l ^ = ¿ g ( _ Z " ) _ ^ U ) , z e C . (16) 
Z Zm _-, Z^ Zm ^Z Z n J ( y ^ y Z n ) 

Using the uniform convergence of the series in (16) we deduce that this 
series defines a continuous function. Henee, taking the limit as z -> zm we 
obtain 

/ / N _ \ ~ ^ gyZ-n) L>jn\Zm) {1*7) 

_-, zn zm \zm zn)\j^1¡\zn) 

Now we prove that 

g(z) f , g(z») P(z) P(z) 
Z Zm Z^ Zm \Z Zn)± \Zn) \Z Zm)i \Zm) 

n=i. 



Indeed, substituting (17) into (18) we obtain 

co 

£ ' g(Zn) 

_Zn Zm \Z ~ 

V ^ g(Zn) 

-i Zn Zm 

_ - A g(Zn) 

P(z) 

- zn)P'(z 

Qjn(z) 

g(Zn) Qjniz) 

n) Zn Zm yZyyi Zn) (^/^yZfi) _ 

z zm 1 

_ \ z n Zm)\Z Zn) Zn, zm _ 

(z) 
_-, Zn Zm \Z Zn) \JJm yZyi) 

n^m 

Z Zm 

Thus, defining y e °M by the expansión y = Yl™=i (y> xn)yn where the 
coefficients {{y,xn)}™=\ in £2(N) are given by 

(y, x„) := 

\Xf Xn) 

Zn zm 

g'(zm) 

if n 7̂  m 

if n = m 

and proceeding as in case (i), it may be shown that 

g(*) 
Z Zn 

(K(z),y), z e C , 

which proves that the function g(z)/(z — zm) belongs to °MK. This concludes 
the proof of the theorem. D 

Some comments concerning Theorem 4 are in order: 

1. In the proof of Theorem 4 we have found that the entire function P 
satisfies: 

(z-z„)S„(z) = <J„P(Z), z e C , 

for some sequence {(rB}™=1 e C\{0}. In the case where P can be 
factorized as P(z) = A(z)Q(z), where Q denotes a canonical product 
having its simple zeros at {z»}^ and A is an entire function 



without zeros, then the Lagrange-type interpolation series (13) can be 
expressed as 

f(z) = ^f(zn) — -——— z e C . 
n=\ 

A(Zn) (z - Z^Q^iZnY 

2. In particular, as de Branges space satisfy the ZR property the orthogonal 
sampling formulas in these spaces, first pro ved in [16], can be expressed 
as Lagrange-type interpolation series (see [11] for some nontrivial 
examples). 

3. It is worth to mention that if one particular sampling formula (9) can be 
written as a Lagrange-type interpolation formula, then the same occurs 
for all the sampling formulas (9) obtained from other compatible data 
(7). Besides, if the space °MK does not satisfy the ZR property, we 
conclude that it does not exist any data (7) for which the kernel K is 
an analytic Kramer kernel and the associated sampling formula (9) can 
be written as a Lagrange-type interpolation series. 

4.4. Some lllustrative Examples 

Closing the article, we show some examples illustrating Theorems 2 
and 4. 

4.4.1. Classical Polynomial Interpolation 
Let 2/V(C) be the set of polynomials with complex coefficients 

of degree less or equal N. As we proved in Theorem 1, S^N((C) 
coincides with the corresponding °MK space where K(z) := X^=oPnz™ being 
{po,pi,.. . ,PN} any basis for the euclidean space °M := <CN+1. Consider 
A" + 1 different points {z„}%=0 in C; it is easy to prove that K is an analytic 
Kramer kernel with respect the data {z„}^=0 and {a„ = 1}^=0. Indeed, the 
set {K(Zn) = qn}^=o is linearly independent in CAr+1 by using Vandermonde 
determinants, that is, it forms a (Riesz) basis for CAr+1. Thus, Theorems 2 
and 4 give, for a n y / e S^AT(C) 

N N P(z) 
f(z) = X)/(z,)S,(z) = E/fa) (z _ \p,{Zn) > ̂ C > 

where Sn(z) = {K(z),q^, being {qX = 0
 t h e d u a l b a s i s o f fanJÍLo i n V^1, 

andP(z) = \\N
n=0(z-zn). 



4.4.2. The Paley-Wiener-Levinson Theorem Revisited 
Let {z„}„ez be a sequence in C for which supB |Rez„ — n\ < 1/4 and 

supre |ImzJ < oo. It is known that the system {eí%w/V2~7i}nez is a Riesz basis 
for L2[—TÍ, TÍ] (see [20, p. 196]). The Fourier kernel K(z) = ^ e L2[—TÍ, TÍ] 

is an analytic Kramer kernel for the data {z„}nez and {a„ = l}„ex- Thus, 
Theorems 2 and 4 give, for a n y / e PWn 

/(z) = J2 f^niz) = J2 /fa) í z_AL z V * ̂  ^ 
» = - 0 0 » = - 0 0 ^ ^ ' ^ " ' 

where, for neTL, the sampling function S„(z) = {K{z),hn)L2[_%^, being 
{h„(w)}nez the dual Riesz basis of {etZr,w/\/2ñ}nez in L2[—TÍ,TÍ], and P is 
the entire function having only simple zeros at {zn}nG_z. Since a result 
from Titchmarsh [18] assures that the functions in PWn are completely 
determined by their zeros, we derive that, up to a constant factor, the 
entire function P coincides with the infinite product 

OO / s 

< « . : : : : • : : ~ / 

Indeed, the function S0 e PWn has only simple zeros at {zm}m-to (S0(zm) = 
30>m). Suppose on the contrary that s £ {zm}mito is a zero of S0. According to 
the classical Paley-Wiener theorem, the function S(z) := (z — zo)S0(z)/(z — 
s) belongs to PWn and vanishes at every z„. If we take into account the 
completeness of the Riesz basis {etz"w/^/2ñ}nez, this implies that 5 = 0, a 
contradiction. Therefore, by using the Titchmarsh's result, the function S0 

coincides, up to a constant factor, with the (convergent) product n^Li (l ~~ 
—)(l — -¿-). Since Theorem 4 gives (z — z„)S„(z) = <r„P(z) for all n e TL, 
we obtain the desired result. 

4.4.3. Finite Cosine Transform 
It is known that any function f(z) = (eos zx, F (x)} L2[0>n], z e C , where 

F e L2[0, TÍ], can be expanded as the sampling formula [13, p. 5] 

SÍTITÍZ 2 v^\ (—l)"zsin7iz ^ 
TÍZ TÍ *—,' z¿ — n¿ 

This sampling formula cannot be expressed as a Lagrange-type 
interpolation series since, as we noticed in section 3, the corresponding 
°MK space does not satisfy the ZR property. 



4.4.4. An Example Involving a Sobolev Space 
Finally, we give an example taken from [10] of a RKHS 1CK, built from 

the Sobolev Hilbert space °M := H1 (—71,71), where the ZR property fails. 
Namely, consider the Sobolev Hilbert space Hl {—%,%) with its usual inner 
product 

/

Tí pTÍ 

f(x) g(x) dx + f'(x) g'(x) dx, j\g e H1 {-%,%). 
-Tí J—TI 

The sequence {emx}nez U {sinh x] forms an orthogonal basis for Hl{—n, TI): 
It is straightforward to pro ve that the orthogonal complement of {emx}nez 
in Hl{—Ti,Ti) is a one-dimensional space for which sintió is a basis. For a 
fixed a e C\Z we define a kernel 

Ka : C —> H\-TZ,TZ) 

z —• ÍTa(z), 

by setting 

[Ka(z)](x) = (z — a) etzx + sirmz sinh x, for JC e {—TI,TI). 

Clearly, Ka defines an analytic Kramer kernel. Expanding Ka(z) e 
Hl{—Ti,Ti) in the former orthogonal basis we obtain 

00 1 

Ka(z) = [1 — i(z — a)] sinnz sinh x + (z — a) } sinc(z — n)emx. 
¿-~l 1 + n¿ 

n=—co 

As a consequence, Theorem 2 gives the following sampling result in Td^: 
Any function/ e K^ can be recovered from its samples {fia)} U {f(n)}nez 
by means of the sampling formula 

sin nz -r-^ z — a 1 + zn 
f(z) = [1 - i(z - a)] f{a) + > f{n) — — - smc(z - n). 

sin na *—' n — a 1 + n¿ 

n=—oo 

The function (z — a)sincz belongs to K^ since (z — a)sincz = 
(Ka(z), 1/2TC)I for all Z E C . However, by using the sampling formula for 
°MKa it is straightforward to check that the function sinc z does not belong 
to °MKa', as a consequence, the above sampling formula cannot be expressed 
as a Lagrange-type interpolation series. 
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