THE ZERO-REMOVING PROPERTY AND LAGRANGE-TYPE INTERPOLATION SERIES

P. E. Fernàndez-Moncada,¹ A. G. García,¹ and M. A. Hernández-Medina²

¹Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés-Madrid, Spain ²Departamento de Matemàtica Aplicada, E.T.S.I.T., U.P.M., Madrid, Spain

 \Box The classical Kramer sampling theorem, which provides a method for obtaining orthogonal sampling formulas, can be formulated in a more general nonorthogonal setting. In this setting, a challenging problem is to characterize the situations when the obtained nonorthogonal sampling formulas can be expressed as Lagrange-type interpolation series. In this article a necessary and sufficient condition is given in terms of the zero removing property. Roughly speaking, this property concerns the stability of the sampled functions on removing a finite number of their zeros.

Keywords Analytic Kramer kernels; Lagrange-type interpolation series; Zero-removing property.

AMS Subject Classification 46E22; 42C15; 94A20.

1. STATEMENT OF THE PROBLEM

The classical Kramer sampling theorem provides a method for obtaining orthogonal sampling theorems [5, 13, 15, 21]. The statement of this general result is as follows. Let K be a complex function defined on $D \times I$, where $I \subset \mathbb{R}$ is an interval and D is an open subset of \mathbb{R} , and such that for every $t \in D$ the sections $K(\cdot, t)$ are in $\mathcal{L}^2(I)$. Assume that there exists a sequence of distinct real numbers $\{t_n\} \subset D$, indexed by a subset of \mathbb{Z} , such that $\{K(x, t_n)\}$ is a complete orthogonal sequence of functions for $\mathcal{L}^2(I)$. Then for any f of the form

$$f(t) = \int_{I} F(x)K(x,t) \, dx \quad t \in D, \tag{1}$$

Received 15 February 2011; Revised 28 April 2011; Accepted 4 May 2011.

Address correspondence to A. G. García, Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. de la Universidad, 30, Leganès-Madrid 28911, Spain; E-mail: pagarcia@math.uc3m.es

where $F \in \mathcal{L}^2(I)$, we have

$$f(t) = \sum_{n} f(t_n) S_n(t), \quad t \in D,$$
(2)

with

$$S_n(t) := \frac{\int_I K(x,t) \overline{K(x,t_n)} \, dx}{\int_I |K(x,t_n)|^2 \, dx}.$$
(3)

The series in (2) converges absolutely and uniformly on subsets of *D* where $||K(\cdot, t)||_{\mathcal{B}^2(D)}$ is bounded.

For instance, taking $I = [-\pi, \pi]$, $K(x, t) = e^{itx}$ and $\{t_n = n\}_{n \in \mathbb{Z}}$, we get the well–known Whittaker–Shannon–Kotel'nikov sampling formula

$$f(t) = \sum_{n=-\infty}^{\infty} f(n) \frac{\sin \pi (t-n)}{\pi (t-n)}, \quad t \in \mathbb{R},$$

for functions in $L^2(\mathbb{R})$ whose Fourier transform has support in $[-\pi, \pi]$.

Now, if we take I = [0, 1], $K(x, t) = \sqrt{xt}J_v(xt)$ and $\{t_n\}$, the sequence of the positive zeros of the Bessel function J_v of vth order with v > -1, then

$$f(t) = \sum_{n} f(t_n) \frac{2\sqrt{t_n} t J_{\mathbf{v}}(t)}{J_{\mathbf{v}}'(t_n)(t^2 - t_n^2)}, \quad t \in \mathbb{R},$$

for every *f* of the form $f(t) = \int_0^1 F(x)\sqrt{xt}J_v(xt)dx$, where $F \in L^2(0,1)$ (see [13, p. 83]).

The Kramer sampling theorem has played a very significant role in sampling theory, interpolation theory, signal analysis and, generally, in mathematics (see, e.g., the survey articles [3, 4]).

In [6], an extension of the Kramer sampling theorem has been obtained to the case when the kernel is analytic in the sampling parameter $t \in D \subseteq \mathbb{C}$. Namely, assume that the Kramer kernel *K* is an entire function for any fixed $x \in I$, and that the function $h(t) = \int_{I} |K(x, t)|^2 dx$ is locally bounded on $D \subseteq \mathbb{C}$. Then any function *f* defined by (1) is an entire function, as are all the sampling functions (3).

A straightforward discrete version of Kramer's theorem can be obtained. Namely, let K(n, z) be a kernel such that, as function of n, the sequence $\{K(n, z)\} \in \ell^2(\mathbb{I})$ for any $z \in D \subseteq \mathbb{C}$, where \mathbb{I} is a countable index set. Assume that, for a suitable sequence $\{z_n\} \subset D$, the sequence $\{K(\cdot, z_n)\}$ is an orthogonal basis for $\ell^2(\mathbb{I})$. Then, any function of the form $f(z) = \sum_{n \in \mathbb{I}} c_n K(n, z)$, where $\{c_n\} \in \ell^2(\mathbb{I})$, can be expanded by means of a sampling series like (2) (see [8]). As examples of discrete kernels for which a sampling formula works we can consider discrete kernels

 $K(n, z) := P_n(z), n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$ and $z \in \mathbb{C}$, where $\{P_n(z)\}_{n \in \mathbb{N}_0}$ denotes a sequence of orthonormal polynomials associated with an indeterminate Hamburger or Stieltjes moment problem (see [8, 9] for the details).

The Kramer sampling theorem has been the cornerstone for a significant mathematical literature of sampling theory associated with differential or difference problems. See, among others, [1, 5, 8, 9, 13, 21] and the references therein.

Thus an abstract analytic formulation of the Kramer sampling theorem raises in a natural way: Let \mathcal{H} be a complex, separable Hilbert space with inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$, and let $\{x_n\}_{n=1}^{\infty}$ be a Riesz basis for \mathcal{H} . Suppose K is a \mathcal{H} -valued function defined on \mathbb{C} . For each $x \in \mathcal{H}$, define the function $f_x(z) = \langle K(z), x \rangle_{\mathcal{H}}$ on \mathbb{C} , and let \mathcal{H}_K denote the collection of all such functions f_x . Furthermore, each element in \mathcal{H}_K is an entire function if and only if K is analytic on \mathbb{C} . In this setting, an abstract version of the analytic Kramer theorem is obtained assuming the existence of two sequences, $\{z_n\}_{n=1}^{\infty}$ in \mathbb{C} and $\{a_n\}_{n=1}^{\infty}$ in $\mathbb{C} \setminus \{0\}$, such that $K(z_n) = a_n x_n$ for each $n \in \mathbb{N}$. Namely, for any $f_x \in \mathcal{H}_K$ we have

$$f_x(z) = \sum_{n=1}^{\infty} f_x(z_n) \frac{S_n(z)}{a_n}, \quad z \in \mathbb{C},$$

where $S_n(z) = \langle K(z), y_n \rangle$, $n \in \mathbb{N}$, being $\{y_n\}_{n=1}^{\infty}$ the dual Riesz basis of $\{x_n\}_{n=1}^{\infty}$ (see sections 2 and 4 infra for all the details).

A challenging problem is to give a necessary and sufficient condition to ensure that the above sampling formula can be written as a Lagrange-type interpolation series, that is

$$f_x(z) = \sum_{n=1}^{\infty} f_x(z_n) \frac{P(z)}{(z-z_n)P(z_n)}, \quad z \in \mathbb{C},$$

where *P* denotes an entire function having only simple zeros at all the points of the sequence $\{z_n\}_{n=1}^{\infty}$. Roughly speaking, the aforesaid necessary and sufficient condition concerns the stability of the functions belonging to the space \mathcal{H}_K on removing a finite number of their zeros; this is an ubiquitous algebraic property in the mathematical literature (see section 3 infra) and it will be called the zero-removing property along the article.

Let us consider the following toy example: Given a basis $\{\mathbf{e}_1, \mathbf{e}_2\}$ in \mathbb{C}^2 , for the kernel $K(z) := z^2(\mathbf{e}_2 - \mathbf{e}_1) + \mathbf{e}_1$ consider the corresponding space \mathcal{H}_K , which coincides with $\{az^2 + b \mid a, b \in \mathbb{C}\}$. Obviously, this space has not the zero-removing property: if we remove a zero from an element in \mathcal{H}_K the resulting polynomial does not belong to \mathcal{H}_K . Besides, the sampling formula $f(z) = f(0)(1 - z^2) + f(1)z^2$, which holds in \mathcal{H}_K cannot be written as a Lagrange interpolation formula. The study of all these topics will be carried out throughout the remaining sections.

2. SOME PRELIMINARIES ON THE SPACE \mathcal{H}_{K}

Suppose we are given a separable complex Hilbert space \mathcal{H} and an abstract kernel K which is nothing but a \mathcal{H} -valued function on \mathbb{C} . Set $f_x(z) := \langle K(z), x \rangle_{\mathcal{H}}$ and denote by \mathcal{H}_K the collection of all such functions $f_x, x \in \mathcal{H}$. It is a reproducing kernel Hilbert space (RKHS) coming from the transforms $K(z), z \in \mathbb{C}$, and corresponding to the reproducing kernel $(z, w) \mapsto \langle K(z), K(w) \rangle_{\mathcal{H}}$. Notice that the mapping \mathcal{T} given by

$$\mathcal{H} \ni x \stackrel{\mathcal{T}}{\longmapsto} f_x \in \mathcal{H}_K \tag{4}$$

is an antilinear mapping from \mathcal{H} onto \mathcal{H}_K (henceforth we omit the subscript x for denoting the elements in \mathcal{H}_K). The mapping \mathcal{T} is injective if and only if the set $\{K(z)\}_{z\in\mathbb{C}}$ is a complete set in \mathcal{H} . In particular, if there exists a sequence $\{z_n\}_{n=1}^{\infty}$ in \mathbb{C} such that $\{K(z_n)\}_{n=1}^{\infty}$ is a Riesz basis for \mathcal{H} , then \mathcal{T} is an antilinear isometry from \mathcal{H} onto \mathcal{H}_K . Recall that a Riesz basis in a separable Hilbert space \mathcal{H} is the image of an orthonormal basis by means of a boundedly invertible operator. Any Riesz basis $\{x_n\}_{n=1}^{\infty}$ has a unique biorthonormal (dual) Riesz basis $\{y_n\}_{n=1}^{\infty}$, i.e., $\langle x_n, y_m \rangle_{\mathcal{H}} = \delta_{n,m}$, such that the expansions

$$x = \sum_{n=1}^{\infty} \langle x, y_n \rangle_{\mathscr{X}} x_n = \sum_{n=1}^{\infty} \langle x, x_n \rangle_{\mathscr{X}} y_n$$

hold for every $x \in \mathcal{H}$ (see [20] for more details and proofs).

The convergence in the norm $\|\cdot\|_{\mathscr{H}_K}$ implies pointwise convergence which is uniform on those subsets of \mathbb{C} where the function $z \mapsto \|K(z)\|_{\mathscr{H}}$ is bounded.

Like in the classical case the following result holds: The space \mathcal{H}_K is a RKHS of entire functions if and only if the kernel K is analytic in \mathbb{C} [19, p. 266]. Another characterization of the analyticity of the functions in \mathcal{H}_K is given in terms of Riesz bases. Suppose that a Riesz basis $\{x_n\}_{n=1}^{\infty}$ for \mathcal{H} is given and let $\{y_n\}_{n=1}^{\infty}$ be its dual Riesz basis; expanding K(z), for each fixed $z \in \mathbb{C}$, with respect to the basis $\{x_n\}_{n=1}^{\infty}$ we obtain

$$K(z) = \sum_{n=1}^{\infty} \langle K(z), y_n \rangle_{\mathscr{H}} x_n,$$

where the coefficients $\langle K(z), y_n \rangle_{\mathcal{H}}$ as functions in *z* are in \mathcal{H}_K . The following result holds: The space \mathcal{H}_K is a RKHS of entire functions if and only if all the functions

$$S_n(z) := \langle K(z), y_n \rangle_{\mathcal{H}}, \quad z \in \mathbb{C}$$
(5)

are entire and $||K(\cdot)||_{\mathcal{H}}$ is bounded on compact sets of \mathbb{C} (see [11]).

3. THE ZERO-REMOVING PROPERTY

In this section, we introduce the zero-removing property for classes of entire functions.

Definition 1 (Zero-Removing Property). A set \mathcal{A} of entire functions has the zero-removing property (ZR property hereafter) if for any $g \in \mathcal{A}$ and any zero w of g the function g(z)/(z-w) belongs to \mathcal{A} .

The ZR property is ubiquitous in mathematics; for instance, the set $\mathscr{P}_N(\mathbb{C})$ of polynomials with complex coefficients of degree less or equal N has the ZR property. Another more involved examples sharing this property are:

- The entire functions in the Pólya class have the ZR property [2, p. 15]. Recall that an entire function E(z) is said to be of Pólya class if it has no zeros in the upper half-plane, if $|E(x iy)| \le |E(x + iy)|$ for y > 0, and if |E(x + iy)| is a nondecreasing function of y > 0 for each fixed *x*.
- The entire functions in the Paley-Wiener class PW_{π} of bandlimited functions to $[-\pi, \pi]$, that is, $PW_{\pi} := \{f \in \mathcal{L}^2(\mathbb{R}) \cap C(\mathbb{R}) : \operatorname{supp} \hat{f} \subseteq [-\pi, \pi]\}$, where \hat{f} stands for the Fourier transform of f, satisfy the ZR property; it follows from the classical Paley-Wiener theorem [20, p. 101], which says that this space can be written as $PW_{\pi} = \{f \text{ entire function} : |f(z)| \leq A e^{\pi|z|}, f|_{\mathbb{R}} \in \mathcal{L}^2(\mathbb{R})\}$. From this characterization the ZR property immediately comes out.
- In general, de Branges spaces $\mathcal{H}(E)$ with strict de Branges function E have the ZR property [2, p. 52]. Let E be an entire function verifying |E(x iy)| < |E(x + iy)| for all y > 0. The de Branges space $\mathcal{H}(E)$ is the set of all entire functions F such that

$$\|F\|_E^2 := \int_{-\infty}^{\infty} \left|\frac{F(t)}{E(t)}\right|^2 dt < \infty,$$

and such that both ratios F/E and F^*/E , where $F^*(z) := \overline{F(z)}$, are of bounded type and of non-positive mean type in the upper half-plane. The structure function or de Branges function E has no zeros in the upper half plane. A de Branges function E is said to be strict if it has no zeros on the real axis. We require that F/E and F^*/E be of bounded type and nonpositive mean type in \mathbb{C}^+ . A function is of bounded type if it can be written as a quotient of two bounded analytic functions in \mathbb{C}^+ and it is of nonpositive mean type if it grows no faster than e^{sy} for each $\varepsilon > 0$ as $y \to \infty$ on the positive imaginary axis $\{iy : y > 0\}$. Note that the Paley–Wiener space PW_{π} is a de Branges space for the structure function $E_{\pi}(z) = \exp(-i\pi z)$. Assume that the space \mathcal{H}_K in section 2 comes from a polynomial kernel K with coefficients in \mathcal{H} ; concerning the ZR property in \mathcal{H}_K , the following result holds:

Theorem 1. The space \mathcal{H}_K associated with a polynomial kernel $K(z) := \sum_{n=0}^{N} p_n z^n$, where $p_n \in \mathcal{H}$ and $p_N \neq 0$, has the ZR property if and only if the set $\{p_0, p_1, \ldots, p_N\}$ is linearly independent in \mathcal{H} .

Proof. Consider $f(z) = a_N z^N + \cdots + a_1 z + a_0 \in \mathcal{H}_K$ with $a_N \neq 0$; there exists $x \in \mathcal{H}$ such that $f(z) = \langle K(z), x \rangle$ and, consequently, $a_j = \langle p_j, x \rangle$ for $j = 0, 1, \ldots, N$. If the space \mathcal{H}_K has the ZR property and $\alpha_0, \alpha_1, \ldots, \alpha_N$ are the roots of the polynomial f then the constant a_N and the polynomials $a_N(z - \alpha_N), a_N(z - \alpha_N)(z - \alpha_{N-1}), \ldots, a_N(z - \alpha_N)(z - \alpha_{N-1}) \cdots (z - \alpha_1)$ belong to \mathcal{H}_K . Let $b_0, b_1, \ldots, b_N \in \mathbb{C}$ such that

$$b_N p_N + b_{N-1} p_{N-1} + \dots + b_0 p_0 = 0.$$
(6)

The vector (b_N, \ldots, b_0) is orthogonal in \mathbb{C}^{N+1} to any vector $(c_N, \ldots, c_0) \in \mathbb{C}^{N+1}$ with $c_N z^N + \cdots + c_0 \in \mathcal{H}_K$. As a consequence, since $a_N \in \mathcal{H}_K$, $b_0 a_N = 0$, which implies that $b_0 = 0$. Analogously, since $a_N(z - \alpha_N)$ belongs to \mathcal{H}_K we have that $a_N b_1 - (a_N \alpha_N) b_0 = 0$ and consequently $b_1 = 0$. Proceeding iteratively it is straightforward to obtain that $b_2 = \cdots = b_{N-1} = 0$; finally, from (6) we conclude that $b_N = 0$.

Now suppose that the set $\{p_0, p_1, \ldots, p_N\}$ is linearly independent in \mathcal{H} . In this case, the mapping $\Phi : \mathcal{H} \to \mathbb{C}^{N+1}$ given by $\Phi(x) = (\langle p_0, x \rangle, \ldots, \langle p_N, x \rangle)$ is surjective. As a consequence, any complex polynomial of degree less than or equal to N belongs to \mathcal{H}_K . Let $f(z) = a_N z^n + \cdots + a_1 z + a_0 \in \mathcal{H}_K$ and let $w \in \mathbb{C}$ be a root of f. Hence, $f(z)/(z-w) = c_0 + c_1 z + \cdots + c_{N-1} z^{N-1}$ is a polynomial of degree less than or equal to N - 1. Since Φ is onto there exists $x \in \mathcal{H}$ such that $\Phi(x) = (c_0, c_1, \ldots, c_{N-1}, 0)$. From the definition of Φ , we conclude that $f(z)/(z-w) = \langle K(z), x \rangle$, that is, the function $f(z)/(z-w) \in \mathcal{H}_K$. \Box

Giving a necessary and sufficient for a general analytic kernel K remains as an open problem. It is worth to mention that a straightforward application of Cauchy–Schwarz inequality shows that entire functions in \mathcal{H}_K inherit the finite order and the type of the vector-valued entire function K provided it has finite order.

As examples of spaces \mathcal{H}_K where the ZR property does not hold let us mention the following:

• Consider the spaces \mathcal{H}_{K_i} , i = 1, 2, associated with the analytic kernels K_i : $\mathbb{C} \to L^2[0, \pi]$ defined by $K_1(z)[x] := \sin zx$ and $K_2(z)[x] := \cos zx$. The space \mathcal{H}_{K_1} corresponds to the space of odd bandlimited functions in PW_{π} while \mathcal{H}_{K_2} corresponds to the space of even bandlimited functions in PW_{π} . It is clear that the ZR property does not hold in these spaces.

- Let $K : \mathbb{C} \to \mathcal{H}$ be an analytic kernel such that $K(z_0) = 0$ for some $z_0 \in \mathbb{C}$. Then all the functions in the associated space \mathcal{H}_K have a zero at z_0 and the ZR property does not hold in \mathcal{H}_K . Indeed, let f be a nonzero entire function in \mathcal{H}_K and let r denote the order of its zero z_0 . The function $f(z)/(z-z_0)^r$ is not in \mathcal{H}_K since it does not vanish at z_0 .
- A little more sophisticated example is the following: For $m \ge 2$ let $K_m : \mathbb{C} \to L^2[-\pi, \pi]$ be defined as $K_m(z) = \frac{1}{\sqrt{2\pi}} e^{iz^m} \in L^2[-\pi, \pi]$. It is straightforward to show that K_m is an analytic kernel; the corresponding space \mathcal{H}_{K_m} does not have the ZR property. Indeed, expanding $K_m(z)$ as power series around the origin we obtain

$$[K_m(z)](x) = \sum_{k=0}^{\infty} \frac{(ix)^k z^{mk}}{k!} = 1 + ixz^m - \frac{x^2 z^{2m}}{2!} - i\frac{x^3 z^{3m}}{3!} + \cdots$$

Thus, for any function $f(z) = \langle K_m(z), F \rangle$ with $F \in L^2[-\pi, \pi]$ we have

$$f(z)=\sum_{k=0}^{\infty}c_kz^{mk},$$

where $c_k = \langle (ix)^k / k!, F \rangle$, k = 0, 1, ... Let $G \in L^2[-\pi, \pi] \setminus \{0\}$ be such that G is orthogonal to K(0) and let $g(z) = \langle K_m(z), G \rangle$. Since $\langle K(0), G \rangle = 0$ we have g(0) = 0. Hence, the Taylor expansion of g(z)/z around the origin has the form

$$rac{g(z)}{z} = d_1 z^{m-1} + d_2 z^{2m-1} + \cdots$$

where $d_k = \langle (ix)^k / k!, G \rangle$, k = 1, 2, ... Since *G* is not the zero function the function g(z)/z does not belong to \mathcal{H}_{K_m} .

4. LAGRANGE-TYPE INTERPOLATION SERIES

In this section, we introduce the analytic Kramer kernels K for which a nonorthogonal sampling theorem in \mathcal{H}_K holds. We prove a converse result: From a sampling formula in \mathcal{H}_K we deduce when K is an analytic Kramer kernel. Finally, we prove the main result: a necessary and sufficient condition ensuring that the Kramer sampling result can be expressed as a Lagrange-type interpolation series.

4.1. The Abstract Kramer Sampling Result

Consider the data

$$\{z_n\}_{n=1}^{\infty} \in \mathbb{C} \quad \text{and} \quad \{a_n\}_{n=1}^{\infty} \in \mathbb{C} \setminus \{0\}.$$
(7)

Definition 2 (Analytic Kramer Kernel). An analytic kernel $K : \mathbb{C} \longrightarrow \mathcal{H}$ is said to be an analytic Kramer kernel (with respect to the data (7)) if it satisfies $K(z_n) = a_n x_n$, $n \in \mathbb{N}$, for some Riesz basis $\{x_n\}_{n=1}^{\infty}$ of \mathcal{H} .

A sequence $\{S_n\}_{n=1}^{\infty}$ of functions in the space \mathcal{H}_K is said to have the interpolation property (with respect to the data (7)) if

$$S_n(z_m) = a_n \,\delta_{n,m}.\tag{8}$$

Thus, an analytic kernel K is an analytic Kramer one if and only if the sequence of functions $\{S_n\}_{n=1}^{\infty}$ in \mathcal{H}_K given by (5), where $\{y_n\}_{n=1}^{\infty}$ is the dual Riesz basis of $\{x_n\}_{n=1}^{\infty}$, has the interpolation property with respect to the same data (7).

Concerning the existence of analytic Kramer kernels, it has been proved in [11] that, associated with any arbitrary sequence of complex numbers $\{z_n\}_{n=1}^{\infty}$ such that $\lim_{n\to\infty} |z_n| = +\infty$, there exists an analytic Kramer kernel K.

Under the notation introduced so far an abstract version of the classical Kramer sampling theorem sampling [15] holds in \mathcal{H}_K ; this is a slight modification of a sampling result in [14]. For notational purposes we include its proof.

Theorem 2 (Kramer Sampling Theorem). Let $K : \mathbb{C} \longrightarrow \mathcal{H}$ be an analytic Kramer kernel, and assume that the interpolation property (8) holds for some sequences $\{z_n\}_{n=1}^{\infty}$ in \mathbb{C} and $\{a_n\}_{n=1}^{\infty}$ in $\mathbb{C} \setminus \{0\}$. Let \mathcal{H}_K be the corresponding RKHS of entire functions. Then any $f \in \mathcal{H}_K$ can be recovered from its samples $\{f(z_n)\}_{n=1}^{\infty}$ by means of the sampling series

$$f(z) = \sum_{n=1}^{\infty} f(z_n) \frac{S_n(z)}{a_n}, \quad z \in \mathbb{C},$$
(9)

where the reconstruction functions S_n are given in (5). The series converges absolutely and uniformly on compact subsets of \mathbb{C} .

Proof. First, notice that $\lim_{n\to\infty} |z_n| = +\infty$; otherwise the sequence $\{z_n\}_{n=1}^{\infty}$ contains a bounded subsequence and, hence, the entire function $S_n \equiv 0$ for all $n \in \mathbb{N}$, which contradicts (8). The anti-linear mapping \mathcal{T} given by (4) is a bijective isometry between \mathcal{H} and \mathcal{H}_K . As a consequence, the functions $\{S_n = \mathcal{T}(y_n)\}_{n=1}^{\infty}$ form a Riesz basis for \mathcal{H}_K ; let $\{T_n\}_{n=1}^{\infty}$ be its dual Riesz basis. Expanding any $f \in \mathcal{H}_K$ in this basis we obtain

$$f(z) = \sum_{n=1}^{\infty} \langle f, T_n \rangle_{\mathscr{H}_K} S_n(z).$$

Moreover,

$$\langle f, T_n \rangle_{\mathscr{H}_K} = \overline{\langle x, x_n \rangle}_{\mathscr{H}} = \left\langle \frac{K(z_n)}{a_n}, x \right\rangle_{\mathscr{H}} = \frac{f(z_n)}{a_n}.$$
 (10)

Since a Riesz basis is an unconditional basis, the sampling series will be pointwise unconditionally convergent and hence, absolutely convergent. The uniform convergence is a standard result in the setting of the RKHS theory since $z \mapsto ||K(z)||_{\mathcal{R}}$ is bounded on compact subsets of \mathbb{C} .

Riesz bases theory (see, e.g., [20]) assures the existence of two positive constants $0 < A \le B$ such that

$$A\|f\|_{\mathscr{H}_{K}}^{2} \leq \sum_{n=1}^{\infty} |f(z_{n})/a_{n}|^{2} \leq B\|f\|_{\mathscr{H}_{K}}^{2} \quad \text{for all } f \in \mathscr{H}_{K},$$
(11)

that is, $||f||_s := \left(\sum_{n=1}^{\infty} |f(z_n)/a_n|^2\right)^{1/2}$ defines an equivalent norm in \mathcal{H}_K . Following [12], we can say that the data (7) is a sampling set for \mathcal{H}_K ; here the sequence of samples belongs to a weighted ℓ^2 space. In [12], the authors characterize the reproducing kernel Hilbert spaces having a fixed sampling set.

The Whittaker–Shannon–Kotel'nikov sampling formula in PW_{π} becomes a particular case of formula (9) in Theorem 2. Indeed, any $f \in PW_{\pi}$ can be written as

$$f(z) = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} \hat{f}(w) e^{izw} dw = \left\langle \frac{e^{izw}}{\sqrt{2\pi}}, \overline{\hat{f}} \right\rangle_{L^{2}[-\pi,\pi]}, \quad z \in \mathbb{C}.$$

The Fourier kernel $K(z) := \frac{e^{iz}}{\sqrt{2\pi}} \in L^2[-\pi,\pi]$ is an analytic Kramer kernel for the data $\{z_n = n\}_{n \in \mathbb{Z}}$ and $\{a_n = 1\}_{n \in \mathbb{Z}}$. In this case, as $\{e^{inw}/\sqrt{2\pi}\}_{n \in \mathbb{Z}}$ is an orthonormal basis for $L^2[-\pi,\pi]$ we get

$$S_n(z) = \frac{1}{2\pi} \langle \mathrm{e}^{\mathrm{i} z}, \mathrm{e}^{\mathrm{i} n \cdot} \rangle_{L^2[-\pi,\pi]} = \frac{\sin \pi (z-n)}{\pi (z-n)}, \quad z \in \mathbb{C}.$$

As a consequence, we obtain the WSK sampling formula in PW_{π} :

$$f(z) = \sum_{n=-\infty}^{\infty} f(n) \frac{\sin \pi (z-n)}{\pi (z-n)}, \quad z \in \mathbb{C}.$$
 (12)

The series converges absolutely and uniformly on horizontal strips of the complex plane.

It is worth to remark that a kernel K can be an analytic Kramer kernel with respect to different data (7). For instance, the Fourier kernel is also

an analytic Kramer kernel with respect to the data $\{z_n = n + \alpha\}_{n \in \mathbb{Z}}$ where $\alpha \in \mathbb{R}$ and $\{a_n = 1\}_{n \in \mathbb{Z}}$. More generally, it is an analytic Kramer kernel with respect to any data $\{t_n\}_{n \in \mathbb{Z}} \subset \mathbb{R}$ and $\{a_n = 1\}_{n \in \mathbb{Z}}$, where the points $\underline{t_n}$ satisfy Kadec's condition $\sup_n |t_n - n| < 1/4$ since the sequence $\{e^{it_n w}/\sqrt{2\pi}\}_{n \in \mathbb{Z}}$ is a Riesz basis for $L^{2}[-\pi, \pi]$ [20, p. 42].

4.2. A Converse Result

An interesting converse problem is to decide whether a sampling formula as (9), pointwise convergent in \mathcal{H}_{K} , implies the Kramer kernel condition in definition 2 for K. From formula (9) in Theorem 2 we derive that:

- From (5), for each z ∈ C, the sequence {S_n(z)}_{n=1}[∞] ∈ ℓ²(N).
 The sequence {f(z_n)/a_n}_{n=1}[∞] belongs to ℓ²(N) for any f ∈ ℋ_K, and
 ∑_{n=1}[∞] α_nS_n(z) = 0 for all z ∈ C and {α_n}_{n=1}[∞] ∈ ℓ²(N) implies α_n = 0 for all $n \in \mathbb{N}$, due to the uniqueness of a Riesz basis expansion in the RKHS \mathcal{H}_{K} .

It is worth to point out that these conditions are also sufficient to prove that K is an analytic Kramer kernel.

Theorem 3. Let \mathcal{H}_K be the range of a mapping \mathcal{T} as in (4) considered as a RKHS with reproducing kernel $k(z,w) = \langle K(z), K(w) \rangle_{\mathcal{H}}$. Let $\{S_n\}_{n=1}^{\infty}$ be a sequence in \mathcal{H}_K such that $\{S_n(z)\}_{n=1}^{\infty}$ belongs to $\ell^2(\mathbb{N})$ for each $z \in \mathbb{C}$. Suppose that the following conditions are fulfilled:

- (i) $\sum_{n=1}^{\infty} \alpha_n S_n(z) = 0$ for all $z \in \mathbb{C}$ and $\{\alpha_n\}_{n=1}^{\infty}$ in $\ell^2(\mathbb{N})$ implies $\alpha_n = 0$ for all n.
- (ii) There exist sequences $\{z_n\}_{n=1}^{\infty}$ in \mathbb{C} and $\{a_n\}_{n=1}^{\infty}$ in $\mathbb{C}\setminus\{0\}$ such that

$$\left\{\frac{f(z_n)}{a_n}\right\}_{n=1}^{\infty} \in \ell^2(\mathbb{N}) \quad \text{and} \quad f(z) = \sum_{n=1}^{\infty} f(z_n) \frac{S_n(z)}{a_n}, \quad \text{for any } f \in \mathcal{H}_K,$$

where the sampling series is pointwise convergent in \mathbb{C} .

Then, the sequence $\{S_n\}_{n=1}^{\infty}$ is a Riesz basis for \mathcal{H}_K and the kernel K of the mapping \mathcal{T} evaluated at $z \in \mathbb{C}$ can be expressed as $K(z) = \sum_{n=1}^{\infty} S_n(z) y_n$, where $\{y_n\}_{n=1}^{\infty}$ is the dual Riesz basis of the Riesz basis $\{x_n = \mathcal{T}^{-1}(S_n)\}_{n=1}^{\infty}$ in \mathcal{H} . In particular, $K(z_n) = a_n y_n$ for any $n \in \mathbb{N}$.

Proof. By defining $\tilde{k}(z,w) := \sum_{n=1}^{\infty} S_n(z) \overline{S_n(w)}$, we obtain a positive definite function which defines a RKHS \mathcal{H} , such that $\mathcal{H} \subseteq \mathcal{H}_{K}$. Condition (i) implies that the sequence $\{S_n\}_{n=1}^{\infty}$ is an orthonormal basis for \mathcal{H} (see [17]).

Now we prove that $\widetilde{\mathcal{H}} = \mathcal{H}_K$ and that the identity mapping $\widetilde{\mathcal{H}} \hookrightarrow \mathcal{H}_K$ is continuous. Take $f \in \mathcal{H}_K$, by condition ii), the sequence $\{f(z_n)a_n^{-1}\}_{n=1}^{\infty}$ is in $\ell^2(\mathbb{N})$. As a consequence, the series $\sum_{n=1}^{\infty} f(z_n)a_n^{-1}S_n$ converges in the norm of $\widetilde{\mathcal{H}}$. By the reproducing kernel property, we have that the series $\sum_{n=1}^{\infty} f(z_n)a_n^{-1}S_n(z)$ is pointwise convergent. Comparing this with what we get from the sampling formula for f we deduce that $f = \sum_{n=1}^{\infty} f(z_n)a_n^{-1}S_n$, where the convergence is in $\widetilde{\mathcal{H}}$ and, consequently, $f \in \widetilde{\mathcal{H}}$.

Next we show the continuity of the identity mapping by applying the closed graph theorem. Indeed, let $\{f_n\}_{n=1}^{\infty}$ be a sequence such that $f_n \to f$ in $\widetilde{\mathcal{H}}$ and $f_n \to g$ in \mathcal{H}_K as $n \to \infty$. Using the reproducing property in both \mathcal{H}_K and $\widetilde{\mathcal{H}}$, for $z \in \mathbb{C}$ we have

$$|f_n(z) - f(z)| \le ||f_n - f||_{\widetilde{\mathscr{R}}} \sqrt{\tilde{k}(z, z)};$$

$$|f_n(z) - g(z)| \le ||f_n - g||_{\mathscr{R}_K} \sqrt{k(z, z)}.$$

Therefore, $\lim_{n\to\infty} f_n(z) = f(z) = g(z)$ for each $z \in \mathbb{C}$, and hence f = g.

Since it is also surjective, we infer that the norms $\|\cdot\|_{\mathscr{H}_K}$ and $\|\cdot\|_{\widetilde{\mathscr{H}}}$ are equivalent from the open mapping theorem. As a consequence, the orthonormal basis $\{S_n\}_{n=1}^{\infty}$ in $\widetilde{\mathscr{H}}$ is a Riesz basis for \mathscr{H}_K .

Assuming that the mapping \mathcal{T} is one-to-one, the sequence $\{x_n = \mathcal{T}^{-1}(S_n)\}_{n=1}^{\infty}$ is a Riesz basis for \mathcal{H} ; denote by $\{y_n\}_{n=1}^{\infty}$ its dual Riesz basis. Expanding K(z) with respect to $\{y_n\}_{n=1}^{\infty}$, for each fixed $z \in \mathbb{C}$ we obtain

$$K(z) = \sum_{n=1}^{\infty} \langle K(z), x_n \rangle_{\mathscr{H}} y_n = \sum_{n=1}^{\infty} S_n(z) y_n,$$

that is, the required expansion for K(z).

Notice that the interpolatory condition $S_n(z_m) = a_m \delta_{n,m}$ comes out of a direct application of condition (ii) to S_n , followed by condition (i).

As to the case when, a priori, \mathcal{T} is not known to be one-to-one, let $\{x_n\}_{n=1}^{\infty}$ be a sequence in \mathcal{H} with $P(x_n) \neq 0$ for all n, where P denotes the orthogonal projection onto the closed subspace $(\operatorname{Ker} \mathcal{T})^{\perp}$. Consider $S_n = \mathcal{T}(x_n) \in \mathcal{H}_K$, and suppose that these functions satisfy the hypotheses in Theorem 3. In this case, $\{S_n\}_{n=1}^{\infty}$ is a Riesz basis for \mathcal{H}_K . Consequently, since $S_n = \mathcal{T}[P(x_n)]$ and $\mathcal{T}|_{P(\operatorname{Ker} \mathcal{T})} = 0$, we obtain that $\{P(x_n)\}_{n=1}^{\infty}$ is a Riesz basis for $P(\mathcal{H}) = (\operatorname{Ker} \mathcal{T})^{\perp}$. The result comes out taking into account the orthogonal sum $\mathcal{H} = (\operatorname{Ker} \mathcal{T})^{\perp} \oplus (\operatorname{Ker} \mathcal{T})$.

4.3. Lagrange-Type Interpolation Series

A more difficult question concerns whether the sampling expansion (9) can be written, in general, as a Lagrange-type interpolation series.

For instance, for $f \in PW_{\pi}$ the WSK formula (12) can be written as the Lagrange-type interpolation series

$$f(z) = \sum_{n=-\infty}^{\infty} f(n) \frac{P(z)}{(z-n)P'(n)}, \quad z \in \mathbb{C},$$

by taking $P(z) = (\sin \pi z)/\pi$, an entire function having only simple zeros at \mathbb{Z} .

The case where the sequence $\{x_n\}_{n=1}^{\infty}$ in Definition 2 is an orthonormal basis for \mathcal{H} was studied in [7]: A necessary and sufficient condition involves the ZR property. Next, we prove that the same necessary and sufficient condition holds in the general case of analytic Kramer kernels *K* involving Riesz bases.

Theorem 4. Let \mathcal{H}_K be a RKHS of entire functions obtained from an analytic Kramer kernel K with respect to the data $\{z_n\}_{n=1}^{\infty} \subset \mathbb{C}$ and $\{a_n\}_{n=1}^{\infty} \in \mathbb{C} \setminus \{0\}$, that is, $K(z_n) = a_n x_n$, $n \in \mathbb{N}$, for some Riesz basis $\{x_n\}_{n=1}^{\infty}$ for \mathcal{H} . Then, the sampling formula (9) for \mathcal{H}_K can be written as a Lagrange-type interpolation series

$$f(z) = \sum_{n=1}^{\infty} f(z_n) \frac{P(z)}{(z - z_n) P'(z_n)}, \quad z \in \mathbb{C},$$
(13)

where P denotes an entire function having only simple zeros at $\{z_n\}_{n=1}^{\infty}$ if and only if the space \mathcal{H}_K satisfies the ZR property.

Proof. For the sufficient condition we have to prove that sampling formula (9) can be written as a Lagrange-type interpolation series (13) for some entire function P. First, we prove that the only zeros of the sampling function S_n are given by $\{z_r\}_{r \neq n}$. Suppose that $S_n(w) = 0$, then by hypothesis the function $S_n(z)/(z-w)$ is in \mathcal{H}_K . Hence, the function

$$\frac{z-z_n}{z-w}S_n(z) = S_n(z) + \frac{w-z_n}{z-w}S_n(z)$$

also belongs to \mathcal{H}_K . If $w \notin \{z_r\}_{r \neq n}$, the function $\frac{z-z_n}{z-w}S_n(z)$ in \mathcal{H}_K vanishes at the sequence $\{z_r\}_{r=1}^{\infty}$ which implies that $S_n \equiv 0$, to give a contradiction. In addition, the zeros of S_n are simple; indeed, suppose that z_m is a multiple zero of S_n . Proceeding as above, the function $\frac{z-z_n}{z-z_m}S_n(z)$ belongs to \mathcal{H}_K and vanishes at $\{z_r\}_{r=1}^{\infty}$ which again implies that $S_n \equiv 0$.

Consequently, choosing an entire function Q having only simple zeros at $\{z_n\}_{n=1}^{\infty}$, for each $n \in \mathbb{N}$ there exists an entire function A_n without zeros such that $(z - z_n)S_n(z) = Q(z)A_n(z), z \in \mathbb{C}$. Next, we prove that there exists an entire function A without zeros and a sequence $\{\sigma_n\}_{n=1}^{\infty}$ in $\mathbb{C}\setminus\{0\}$ such that $A_n(z) = \sigma_n A(z)$ for all $z \in \mathbb{C}$. For $m \neq n$ the function $\frac{z-z_n}{z-z_m} S_n(z)$ in \mathcal{H}_K has its zeros at $\{z_r\}_{r\neq m}$. Thus, the sampling formula (9) gives

$$\frac{z-z_n}{z-z_m}S_n(z)=[(z_m-z_n)S_n'(z_m)]\frac{S_m(z)}{a_m},\quad z\in\mathbb{C}.$$

Fixing m = 1, we conclude that $A_n(z) = \sigma_n A(z)$ where $A = A_1$ and $\sigma_n = (z_1 - z_n)S'_n(z_1) \neq 0$ for $n \in \mathbb{N} \setminus \{1\}$ and $\sigma_1 = 1$. Hence, $S_n(z) = \frac{\sigma_n Q(z)A(z)}{z-z_n}$ for $z \neq z_n$ and $S_n(z_n) = a_n = \sigma_n Q'(z_n)A(z_n)$. Substituting in (9) we obtain the Lagrange-type interpolation series (13) where P(z) = A(z)Q(z).

For the necessary condition, assume that the sampling formula in \mathcal{H}_K takes the form of a Lagrange-type interpolation series (13). Given $g \in \mathcal{H}_K$, there exists $x \in \mathcal{H}$ such that $g(z) = \langle K(z), x \rangle, z \in \mathbb{C}$. Assuming that g(w) = 0, we have to prove that the function g(z)/(z-w) belongs to \mathcal{H}_K . The sampling expansion for g at w gives

$$\sum_{n=1}^{\infty} g(z_n) \frac{P(w)}{(w-z_n)P'(z_n)} = 0.$$
 (14)

We distinguish two cases:

(i)
$$w \in \mathbb{C} \setminus \{z_n\}_{n=1}^{\infty}$$
. As $P(w) \neq 0$, from (14) we obtain
$$\sum_{n=1}^{\infty} g(z_n) \frac{1}{(w-z_n)P'(z_n)} = 0.$$

Thus,

$$g(z) = \sum_{n=1}^{\infty} g(z_n) \frac{P(z)}{(z-z_n)P'(z_n)} - \sum_{n=1}^{\infty} g(z_n) \frac{P(z)}{(w-z_n)P'(z_n)}$$
$$= (z-w) \sum_{n=1}^{\infty} g(z_n) \frac{P(z)}{P'(z_n)} \frac{1}{(z-z_n)(z_n-w)}.$$

Therefore, the entire function G(z) := g(z)/(z - w) can be recovered from its samples at $\{z_n\}_{n=1}^{\infty}$ through the formula

$$G(z) = \sum_{n=1}^{\infty} G(z_n) \frac{P(z)}{(z-z_n)P'(z_n)}, \quad z \in \mathbb{C}.$$
(15)

Moreover, the function *G* is in \mathcal{H}_K because $G(z) = \langle K(z), y \rangle_{\mathcal{H}}$, where $y \in \mathcal{H}$ has the expansion $y = \sum_{n=1}^{\infty} \langle y, x_n \rangle y_n$ with respect to the dual Riesz basis

 $\{y_n\}_{n=1}^{\infty}$ of $\{x_n\}_{n=1}^{\infty}$, where the coefficients are given by

$$\left\{\langle y, x_n\rangle := \frac{1}{\overline{z}_n - \overline{w}} \langle x, x_n\rangle \right\}_{n=1}^{\infty} \in \ell^2(\mathbb{N}).$$

Indeed, sampling formula (13) for S_n gives $S_n(z) = a_n \frac{P(z)}{(z-z_n)P'(z_n)}$. Hence, by using the biorthogonality $\langle x_n, y_n \rangle = \delta_{n,m}$, we obtain

$$\langle K(z), y \rangle = \sum_{n=1}^{\infty} \frac{S_n(z) \overline{\langle x, x_n \rangle}}{w - z_n} = G(z), \quad z \in \mathbb{C},$$

where we have used (15), and the result that $\overline{\langle x, x_n \rangle} = g(z_n)/a_n, n \in \mathbb{N}$.

(ii) $w = z_m$ for some $m \in \mathbb{N}$. As $g(z_m) = 0$, the sampling expansion for g reads

$$g(z) = \sum_{\substack{n=1\\n\neq m}}^{\infty} g(z_n) \frac{P(z)}{(z-z_n)P'(z_n)}, \quad z \in \mathbb{C}.$$

Setting $P(z) = (z - z_m)Q_m(z)$ we have $P'(z) = Q_m(z) + (z - z_m)Q'_m(z)$ and, hence,

$$P'(z_k) = \begin{cases} (z_k - z_m) Q'_m(z_k) & \text{if } k \neq m \\ Q_m(z_m) & \text{if } k = m \end{cases}$$

Hence,

$$\frac{g(z)}{z - z_m} = \sum_{\substack{n=1\\n \neq m}}^{\infty} \frac{g(z_n)}{z_n - z_m} \frac{Q_m(z)}{(z - z_n)Q'_m(z_n)}, \quad z \in \mathbb{C}.$$
 (16)

Using the uniform convergence of the series in (16) we deduce that this series defines a continuous function. Hence, taking the limit as $z \to z_m$ we obtain

$$g'(z_m) = \sum_{\substack{n=1\\n \neq m}}^{\infty} \frac{g(z_n)}{z_n - z_m} \frac{Q_m(z_m)}{(z_m - z_n) Q'_m(z_n)}$$
(17)

Now we prove that

$$\frac{g(z)}{z-z_m} = \sum_{\substack{n=1\\n\neq m}}^{\infty} \frac{g(z_n)}{z_n - z_m} \frac{P(z)}{(z-z_n)P'(z_n)} + g'(z_m) \frac{P(z)}{(z-z_m)P'(z_m)}.$$
 (18)

Indeed, substituting (17) into (18) we obtain

$$\begin{split} \sum_{\substack{n=1\\n\neq m}}^{\infty} \left[\frac{g(z_n)}{z_n - z_m} \frac{P(z)}{(z - z_n)P'(z_n)} + \frac{g(z_n)}{z_n - z_m} \frac{Q_m(z)}{(z_m - z_n)Q'_m(z_n)} \right] \\ &= \sum_{\substack{n=1\\n\neq m}}^{\infty} \frac{g(z_n)}{z_n - z_m} \frac{Q_m(z)}{Q'_m(z_n)} \left[\frac{z - z_m}{(z_n - z_m)(z - z_n)} - \frac{1}{z_n - z_m} \right] \\ &= \sum_{\substack{n=1\\n\neq m}}^{\infty} \frac{g(z_n)}{z_n - z_m} \frac{Q_m(z)}{(z - z_n)Q'_m(z_n)} \\ &= \frac{g(z)}{z - z_m}. \end{split}$$

Thus, defining $y \in \mathcal{H}$ by the expansion $y = \sum_{n=1}^{\infty} \langle y, x_n \rangle y_n$ where the coefficients $\{\langle y, x_n \rangle\}_{n=1}^{\infty}$ in $\ell^2(\mathbb{N})$ are given by

$$\langle y, x_n \rangle := \begin{cases} rac{\langle x, x_n \rangle}{\overline{z_n - \overline{z_m}}} & ext{if } n \neq m \\ rac{\overline{g'(z_m)}}{a_m} & ext{if } n = m \end{cases}$$

and proceeding as in case (i), it may be shown that

$$\frac{g(z)}{z-z_m} = \langle K(z), y \rangle, \quad z \in \mathbb{C},$$

which proves that the function $g(z)/(z - z_m)$ belongs to \mathcal{H}_K . This concludes the proof of the theorem.

Some comments concerning Theorem 4 are in order:

1. In the proof of Theorem 4 we have found that the entire function *P* satisfies:

$$(z-z_n)S_n(z) = \sigma_n P(z), \quad z \in \mathbb{C},$$

for some sequence $\{\sigma_n\}_{n=1}^{\infty} \in \mathbb{C} \setminus \{0\}$. In the case where *P* can be factorized as P(z) = A(z)Q(z), where *Q* denotes a canonical product having its simple zeros at $\{z_n\}_{n=1}^{\infty}$ and *A* is an entire function

without zeros, then the Lagrange-type interpolation series (13) can be expressed as

$$f(z) = \sum_{n=1}^{\infty} f(z_n) \frac{A(z)}{A(z_n)} \frac{Q(z)}{(z-z_n)Q'(z_n)}, \quad z \in \mathbb{C}.$$

- 2. In particular, as de Branges space satisfy the ZR property the orthogonal sampling formulas in these spaces, first proved in [16], can be expressed as Lagrange-type interpolation series (see [11] for some nontrivial examples).
- 3. It is worth to mention that if one particular sampling formula (9) can be written as a Lagrange-type interpolation formula, then the same occurs for all the sampling formulas (9) obtained from other compatible data (7). Besides, if the space \mathcal{H}_K does not satisfy the ZR property, we conclude that it does not exist any data (7) for which the kernel *K* is an analytic Kramer kernel and the associated sampling formula (9) can be written as a Lagrange-type interpolation series.

4.4. Some Illustrative Examples

Closing the article, we show some examples illustrating Theorems 2 and 4.

4.4.1. Classical Polynomial Interpolation

Let $\mathscr{P}_N(\mathbb{C})$ be the set of polynomials with complex coefficients of degree less or equal N. As we proved in Theorem 1, $\mathscr{P}_N(\mathbb{C})$ coincides with the corresponding \mathscr{H}_K space where $K(z) := \sum_{n=0}^{N} \mathbf{p}_n z^n$ being $\{\mathbf{p}_0, \mathbf{p}_1, \ldots, \mathbf{p}_N\}$ any basis for the euclidean space $\mathscr{H} := \mathbb{C}^{N+1}$. Consider N + 1 different points $\{z_n\}_{n=0}^N$ in \mathbb{C} ; it is easy to prove that K is an analytic Kramer kernel with respect the data $\{z_n\}_{n=0}^N$ and $\{a_n = 1\}_{n=0}^N$. Indeed, the set $\{K(z_n) = \mathbf{q}_n\}_{n=0}^N$ is linearly independent in \mathbb{C}^{N+1} by using Vandermonde determinants, that is, it forms a (Riesz) basis for \mathbb{C}^{N+1} . Thus, Theorems 2 and 4 give, for any $f \in \mathscr{P}_N(\mathbb{C})$

$$f(z) = \sum_{n=0}^{N} f(z_n) S_n(z) = \sum_{n=0}^{N} f(z_n) \frac{P(z)}{(z-z_n)P'(z_n)}, \quad z \in \mathbb{C},$$

where $S_n(z) = \langle K(z), \mathbf{q}_n^* \rangle$, being $\{\mathbf{q}_n^*\}_{n=0}^N$ the dual basis of $\{\mathbf{q}_n\}_{n=0}^N$ in \mathbb{C}^{N+1} , and $P(z) = \prod_{n=0}^N (z - z_n)$.

4.4.2. The Paley–Wiener–Levinson Theorem Revisited

Let $\{z_n\}_{n\in\mathbb{Z}}$ be a sequence in \mathbb{C} for which $\sup_n |\operatorname{Re} z_n - n| < 1/4$ and $\sup_n |\operatorname{Im} z_n| < \infty$. It is known that the system $\{e^{iz_n w}/\sqrt{2\pi}\}_{n\in\mathbb{Z}}$ is a Riesz basis for $L^2[-\pi,\pi]$ (see [20, p. 196]). The Fourier kernel $K(z) = \frac{e^{iz}}{\sqrt{2\pi}} \in L^2[-\pi,\pi]$ is an analytic Kramer kernel for the data $\{z_n\}_{n\in\mathbb{Z}}$ and $\{a_n = 1\}_{n\in\mathbb{Z}}$. Thus, Theorems 2 and 4 give, for any $f \in PW_{\pi}$

$$f(z) = \sum_{n=-\infty}^{\infty} f(z_n) S_n(z) = \sum_{n=-\infty}^{\infty} f(z_n) \frac{P(z)}{(z-z_n)P'(z_n)}, \quad z \in \mathbb{C},$$

where, for $n \in \mathbb{Z}$, the sampling function $S_n(z) = \langle K(z), h_n \rangle_{L^2[-\pi,\pi]}$, being $\{h_n(w)\}_{n \in \mathbb{Z}}$ the dual Riesz basis of $\{e^{iz_n w}/\sqrt{2\pi}\}_{n \in \mathbb{Z}}$ in $L^2[-\pi,\pi]$, and P is the entire function having only simple zeros at $\{z_n\}_{n \in \mathbb{Z}}$. Since a result from Titchmarsh [18] assures that the functions in PW_{π} are completely determined by their zeros, we derive that, up to a constant factor, the entire function P coincides with the infinite product

$$(z-z_0)\prod_{n=1}^{\infty}\left(1-rac{z}{z_n}
ight)\left(1-rac{z}{z_{-n}}
ight).$$

Indeed, the function $S_0 \in PW_{\pi}$ has only simple zeros at $\{z_m\}_{m\neq 0}$ $(S_0(z_m) = \delta_{0,m})$. Suppose on the contrary that $s \notin \{z_m\}_{m\neq 0}$ is a zero of S_0 . According to the classical Paley–Wiener theorem, the function $S(z) := (z - z_0)S_0(z)/(z - s)$ belongs to PW_{π} and vanishes at every z_n . If we take into account the completeness of the Riesz basis $\{e^{iz_nw}/\sqrt{2\pi}\}_{n\in\mathbb{Z}}$, this implies that $S \equiv 0$, a contradiction. Therefore, by using the Titchmarsh's result, the function S_0 coincides, up to a constant factor, with the (convergent) product $\prod_{n=1}^{\infty} (1 - \frac{z}{z_n})(1 - \frac{z}{z_{-n}})$. Since Theorem 4 gives $(z - z_n)S_n(z) = \sigma_n P(z)$ for all $n \in \mathbb{Z}$, we obtain the desired result.

4.4.3. Finite Cosine Transform

It is known that any function $f(z) = \langle \cos zx, F(x) \rangle_{L^2[0,\pi]}, z \in \mathbb{C}$, where $F \in L^2[0,\pi]$, can be expanded as the sampling formula [13, p. 5]

$$f(z) = f(0)\frac{\sin \pi z}{\pi z} + \frac{2}{\pi} \sum_{n=0}^{\infty} f(n) \frac{(-1)^n z \sin \pi z}{z^2 - n^2}, \quad z \in \mathbb{C}.$$

This sampling formula cannot be expressed as a Lagrange-type interpolation series since, as we noticed in section 3, the corresponding \mathcal{H}_{K} space does not satisfy the ZR property.

4.4.4. An Example Involving a Sobolev Space

Finally, we give an example taken from [10] of a RKHS \mathcal{H}_K , built from the Sobolev Hilbert space $\mathcal{H} := H^1(-\pi, \pi)$, where the ZR property fails. Namely, consider the Sobolev Hilbert space $H^1(-\pi, \pi)$ with its usual inner product

$$\langle f,g\rangle_1 = \int_{-\pi}^{\pi} f(x)\,\overline{g(x)}\,dx + \int_{-\pi}^{\pi} f'(x)\,\overline{g'(x)}\,dx, \quad f,g \in H^1(-\pi,\pi).$$

The sequence $\{e^{inx}\}_{n\in\mathbb{Z}} \cup \{\sinh x\}$ forms an orthogonal basis for $H^1(-\pi,\pi)$: It is straightforward to prove that the orthogonal complement of $\{e^{inx}\}_{n\in\mathbb{Z}}$ in $H^1(-\pi,\pi)$ is a one-dimensional space for which $\sinh x$ is a basis. For a fixed $a \in \mathbb{C} \setminus \mathbb{Z}$ we define a kernel

$$K_a : \mathbb{C} \longrightarrow H^1(-\pi, \pi)$$

 $z \longrightarrow K_a(z),$

by setting

$$[K_a(z)](x) = (z - a) e^{izx} + \sin \pi z \sinh x$$
, for $x \in (-\pi, \pi)$.

Clearly, K_a defines an analytic Kramer kernel. Expanding $K_a(z) \in H^1(-\pi, \pi)$ in the former orthogonal basis we obtain

$$K_a(z) = [1 - i(z - a)] \sin \pi z \sinh x + (z - a) \sum_{n = -\infty}^{\infty} \frac{1 + zn}{1 + n^2} \operatorname{sinc}(z - n) e^{inx}.$$

As a consequence, Theorem 2 gives the following sampling result in \mathcal{H}_{K_a} : Any function $f \in \mathcal{H}_{K_a}$ can be recovered from its samples $\{f(a)\} \cup \{f(n)\}_{n \in \mathbb{Z}}$ by means of the sampling formula

$$f(z) = [1 - i(z - a)] \frac{\sin \pi z}{\sin \pi a} f(a) + \sum_{n = -\infty}^{\infty} f(n) \frac{z - a}{n - a} \frac{1 + zn}{1 + n^2} \operatorname{sinc}(z - n).$$

The function $(z-a)\operatorname{sinc} z$ belongs to \mathcal{H}_{K_a} since $(z-a)\operatorname{sinc} z = \langle K_a(z), 1/2\pi \rangle_1$ for all $z \in \mathbb{C}$. However, by using the sampling formula for \mathcal{H}_{K_a} it is straightforward to check that the function sinc z does not belong to \mathcal{H}_{K_a} ; as a consequence, the above sampling formula cannot be expressed as a Lagrange-type interpolation series.

ACKNOWLEDGMENTS

This work has been supported by the grant MTM2009–08345 from the Spanish Ministerio de Ciencia e Innovación (MICINN).

REFERENCES

- M.H. Annaby and G. Freiling (2000). Sampling expansions associated with Kamke problems. Math. Z. 234: 163–189.
- 2. L. de Branges (1986). Hilbert Spaces of Entire Functions. Prentice-Hall, Englewood Cliffs, NJ.
- P. Butzer, J.R. Higgins, and R.L. Stens (2000). Sampling theory in signal analysis. In: Development of Mathematics 1950–2000 (J.P. Pier, ed.). Birkhäuser, Basel, pp. 193–234.
- P. Butzer and G. Nasri-Roudsari (1997). Kramer's sampling theorem in signal analysis and its role in mathematics. In: *Image Processing; Mathematical Methods and Applications. Proceedings of the IMA Conference*, Cranfield University, UK (J.M. Blackledge, ed.). Clarendon Press, Oxford, pp. 49–95.
- W.N. Everitt and G. Nasri-Roudsari (1999). Interpolation and sampling theories, and linear ordinary boundary value problems. In: *Sampling Theory in Fourier and Signal Analysis: Advanced Topics* (J.R. Higgins and R.L. Stens, eds.). Oxford University Press, Oxford, pp. 96–129.
- W.N. Everitt, G. Nasri-Roudsari, and J. Rehberg (1998). A note on the analytic form of the Kramer sampling theorem. *Results Math.* 34:310–319.
- W.N. Everitt, A.G. García, and M.A. Hernández-Medina (2008). On Lagrange-type interpolation series and analytic Kramer kernels. *Results Math.* 51:215–228.
- 8. A.G. García and M.A. Hernández-Medina (2001). The discrete Kramer sampling theorem and indeterminate moment problems. J. Comp. Appl. Math. 134:13–22.
- 9. A.G. García and M.A. Hernández-Medina (2003). Discrete Sturm-Liouville problems, Jacobi matrices and Lagrange-type interpolation series. J. Math. Anal. Appl. 280:221-231.
- A.G. García and L.L. Littlejohn (2004). On analytic sampling theory. J. Comp. Appl. Math. 171:235–246.
- A.G. García, M.A. Hernández-Medina, and F.H. Szafraniec (2011) Analytic Kramer kernels, Lagrange-type interpolation series and de Branges spaces. *Complex Variables and Elliptic Equations*. DOI: 10.1080/17476933.2010.551206
- D. Han, M.Z. Nashed, and Q. Sun (2009). Sampling expansions in reproducing kernel Hilbert and Banach spaces. *Numer. Funct. Anal. Optim.* 30:971–987.
- J.R. Higgins (1996). Sampling Theory in Fourier and Signal Analysis: Foundations. Oxford University Press, Oxford, UK.
- J.R. Higgins (2001). A sampling principle associated with Saitoh's fundamental theory of linear transformations. In: *Analytic Extension Formulas and Their Applications* (S. Saitoh, N. Hayashi, and M. Yamamoto, eds.). Kluwer Academic, Dordrecht, pp. 73–86.
- 15. H.P. Kramer (1957). A generalized sampling theorem. J. Math. Phys. 63:68-72.
- M.Z. Nashed and G.G. Walter (1991). General sampling theorems for functions in reproducing kernel spaces. *Math. Control Signals Systems* 4:363–390.
- 17. F. H. Szafraniec (2000). The reproducing kernel Hilbert space and its multiplication operators. *Operator Th. Adv. Appl.* 114:253–263.
- 18. E. C. Titchmarsh (1926). The zeros of certain integral functions. *Proc. London Math. Soc.* 25:283–302.
- 19. A.E. Taylor and D.C. Lay (1980). Introduction to Functional Analysis. John Wiley & Sons, New York.
- 20. R.M. Young (1980). An Introduction to Nonharmonic Fourier Series. Academic Press, New York.
- 21. A.I. Zayed (1993). Advances in Shannon's Sampling Theory. CRC Press, Boca Raton, FL.