4,103 research outputs found

    Errors in estimating unexpected accruals in the presence of large changes in net external financing

    Full text link
    We demonstrate that the articulation among accruals, cash flows and revenues which is typically assumed in tests of earnings management does not hold when large (positive or negative) external financing activities are present. Our study provides evidence that managers normal operating decisions associated with net external financing activities are likely to lead to economically and statistically significant measurement errors in unexpected accruals. This is a serious concern given the frequency with which the partitioning variable used to identify instances of alleged earnings management is correlated with significant movements in net external financing. Simulation tests show that even at modest levels of net external financing changes, rejection frequencies for the null hypothesis of no earnings management rise dramaticall

    Respiratory Muscle Weakness in Patients with Heart Failure: Time to Make It a Standard Clinical Marker and a Need for Novel Therapeutic Interventions?

    Get PDF
    Dysfunction of the respiratory muscles (particularly the diaphragm) can compromise ventilation, pulmonary gas exchange, and oxygen delivery to the tissues. This is especially true for patients with heart failure (HF), where a loss in respiratory muscle strength and endurance capacity is common.¹‾⁴ Inspiratory muscle weakness in HF causes heightened breathlessness, exertional intolerance, and reduces health-related quality-of-life.⁵‾⁷ The clinical importance of respiratory muscle weakness has also been clearly demonstrated

    Joining a conversation: the problem/gap/hook heuristic

    Get PDF

    Formation of Methane Hydrate in the Presence of Natural and Synthetic Nanoparticles

    Get PDF
    Natural gas hydrates occur widely on the ocean-bed and in permafrost regions, and have potential as an untapped energy resource. Their formation and growth, however, poses major problems for the energy sector due to their tendency to block oil and gas pipelines, whereas their melting is viewed as a potential contributor to climate change. Although recent advances have been made in understanding bulk methane hydrate formation, the effect of impurity particles, which are always present under conditions relevant to industry and the environment, remains an open question. Here we present results from neutron scattering experiments and molecular dynamics simulations that show that the formation of methane hydrate is insensitive to the addition of a wide range of impurity particles. Our analysis shows that this is due to the different chemical natures of methane and water, with methane generally excluded from the volume surrounding the nanoparticles. This has important consequences for our understanding of the mechanism of hydrate nucleation and the design of new inhibitor molecules

    The Typical Flight Performance of Blowflies: Measuring the Normal Performance Envelope of Calliphora vicina Using a Novel Corner-Cube Arena

    Get PDF
    Despite a wealth of evidence demonstrating extraordinary maximal performance, little is known about the routine flight performance of insects. We present a set of techniques for benchmarking performance characteristics of insects in free flight, demonstrated using a model species, and comment on the significance of the performance observed. Free-flying blowflies (Calliphora vicina) were filmed inside a novel mirrored arena comprising a large (1.6 m1.6 m1.6 m) corner-cube reflector using a single high-speed digital video camera (250 or 500 fps). This arrangement permitted accurate reconstruction of the flies' 3-dimensional trajectories without the need for synchronisation hardware, by virtue of the multiple reflections of a subject within the arena. Image sequences were analysed using custom-written automated tracking software, and processed using a self-calibrating bundle adjustment procedure to determine the subject's instantaneous 3-dimensional position. We illustrate our method by using these trajectory data to benchmark the routine flight performance envelope of our flies. Flight speeds were most commonly observed between 1.2 ms−1 and 2.3 ms−1, with a maximum of 2.5 ms−1. Our flies tended to dive faster than they climbed, with a maximum descent rate (−2.4 ms−1) almost double the maximum climb rate (1.2 ms−1). Modal turn rate was around 240°s−1, with maximal rates in excess of 1700°s−1. We used the maximal flight performance we observed during normal flight to construct notional physical limits on the blowfly flight envelope, and used the distribution of observations within that notional envelope to postulate behavioural preferences or physiological and anatomical constraints. The flight trajectories we recorded were never steady: rather they were constantly accelerating or decelerating, with maximum tangential accelerations and maximum centripetal accelerations on the order of 3 g

    Notch effect on the fracture of several rocks: Application of the Theory of Critical Distances

    Get PDF
    The paper analyses the fracture behaviour of several rocks, namely a sandstone, a limestone and two marbles, one of them being a Carrara marble. The experimental program comprises in total 216 fracture specimens, tested in 4-point bending conditions and including specimens with notch radii varying from 0.15 mm up to 15 mm. The notch effect is analysed through the evolution of the apparent fracture toughness and the application of the Theory of Critical Distances. The present study aims to generalize a previous study on a granite and a limestone to a broader range of rocks. The point and line methods of the Theory of the Critical Distances successfully explain the notch effect on the fracture specimens. The value of the critical distance of these rocks is of the order of mm. Finally, the results show a correlation between the microstructural features of the rocks, specifically the grain size, and their critical distances.The authors of this work would like to express their gratitude to the Spanish Ministry of Economy and Competitiveness for financing the National Plan Project (Ref.: BIA2015-67479-R) under the name of ‘La Distancia Crítica en la Fractura de Rocas’ (The Critical Distance in Rock Fracture)

    Activation of the innate immune receptor Dectin-1 upon formation of a 'phagocytic synapse'.

    Get PDF
    Innate immune cells must be able to distinguish between direct binding to microbes and detection of components shed from the surface of microbes located at a distance. Dectin-1 (also known as CLEC7A) is a pattern-recognition receptor expressed by myeloid phagocytes (macrophages, dendritic cells and neutrophils) that detects β-glucans in fungal cell walls and triggers direct cellular antimicrobial activity, including phagocytosis and production of reactive oxygen species (ROS). In contrast to inflammatory responses stimulated upon detection of soluble ligands by other pattern-recognition receptors, such as Toll-like receptors (TLRs), these responses are only useful when a cell comes into direct contact with a microbe and must not be spuriously activated by soluble stimuli. In this study we show that, despite its ability to bind both soluble and particulate β-glucan polymers, Dectin-1 signalling is only activated by particulate β-glucans, which cluster the receptor in synapse-like structures from which regulatory tyrosine phosphatases CD45 and CD148 (also known as PTPRC and PTPRJ, respectively) are excluded (Supplementary Fig. 1). The 'phagocytic synapse' now provides a model mechanism by which innate immune receptors can distinguish direct microbial contact from detection of microbes at a distance, thereby initiating direct cellular antimicrobial responses only when they are required

    Increased entropy of signal transduction in the cancer metastasis phenotype

    Get PDF
    Studies into the statistical properties of biological networks have led to important biological insights, such as the presence of hubs and hierarchical modularity. There is also a growing interest in studying the statistical properties of networks in the context of cancer genomics. However, relatively little is known as to what network features differ between the cancer and normal cell physiologies, or between different cancer cell phenotypes. Based on the observation that frequent genomic alterations underlie a more aggressive cancer phenotype, we asked if such an effect could be detectable as an increase in the randomness of local gene expression patterns. Using a breast cancer gene expression data set and a model network of protein interactions we derive constrained weighted networks defined by a stochastic information flux matrix reflecting expression correlations between interacting proteins. Based on this stochastic matrix we propose and compute an entropy measure that quantifies the degree of randomness in the local pattern of information flux around single genes. By comparing the local entropies in the non-metastatic versus metastatic breast cancer networks, we here show that breast cancers that metastasize are characterised by a small yet significant increase in the degree of randomness of local expression patterns. We validate this result in three additional breast cancer expression data sets and demonstrate that local entropy better characterises the metastatic phenotype than other non-entropy based measures. We show that increases in entropy can be used to identify genes and signalling pathways implicated in breast cancer metastasis. Further exploration of such integrated cancer expression and protein interaction networks will therefore be a fruitful endeavour.Comment: 5 figures, 2 Supplementary Figures and Table

    Intramuscular midazolam, olanzapine, or haloperidol for the management of acute agitation: A multi-centre, double-blind, randomised clinical trial

    Get PDF
    © 2021 The Authors Background: The safety and effectiveness of intramuscular olanzapine or haloperidol compared to midazolam as the initial pharmacological treatment for acute agitation in emergency departments (EDs) has not been evaluated. Methods: A pragmatic, randomised, double-blind, active-controlled trial was conducted from December 2014 to September 2019, in six Hong Kong EDs. Patients (aged 18–75 years) with undifferentiated acute agitation requiring parenteral sedation were randomised to 5 mg intramuscular midazolam (n = 56), olanzapine (n = 54), or haloperidol (n = 57). Primary outcomes were time to adequate sedation and proportion of patients who achieved adequate sedation at each follow-up interval. Sedation levels were measured on a 6-level validated scale (ClinicalTrials.gov Identifier: NCT02380118). Findings: Of 206 patients randomised, 167 (mean age, 42 years; 98 [58·7%] male) were analysed. Median time to sedation for IM midazolam, olanzapine, and haloperidol was 8·5 (IQR 8·0), 11·5 (IQR 30·0), and 23·0 (IQR 21·0) min, respectively. At 60 min, similar proportions of patients were adequately sedated (98%, 87%, and 97%). There were statistically significant differences for time to sedation with midazolam compared to olanzapine (p = 0·03) and haloperidol (p = 0·002). Adverse event rates were similar across the three arms. Dystonia (n = 1) and cardiac arrest (n = 1) were reported in the haloperidol group. Interpretation: Midazolam resulted in faster sedation in patients with undifferentiated agitation in the emergency setting compared to olanzapine and haloperidol. Midazolam and olanzapine are preferred over haloperidol's slower time to sedation and potential for cardiovascular and extrapyramidal side effects. Funding: Research Grants Council, Hong Kong
    • …
    corecore