5,940 research outputs found

    Geometrical characterization of textures consisting of two or three discrete colorings

    Get PDF
    Geometrical characterization for discretized contrast textures is realized by computing the Gaussian and mean curvatures relative to the central pixel of a clique and four neighboring pixels, these four neighbors either being first or second order neighbors. Practical formulae for computing these curvatures are presented. Curvatures based on the central pixel depend upon the brightness configuration of the clique pixels. Therefore the cliques are classified into classes by configuration of pixel contrast or coloring. To look at the textures formed by geometrically classified cliques, we create several textures using overlapping tiling of cliques belonging to a single curvature class. Several examples of hyperbolic textures, consisting of repeated hyperbolic cliques surrounded by non-hyperbolic cliques, are presented with the nonhyperbolic textures. We also introduce a system of 81 rotationally and brightness shift invariant geo-cliques that have shared curvatures and show that histograms of these 81 geo-cliques seem to be able to distinguish isotrigon textures

    Soil Bacteria and Fungi Respond on Different Spatial Scales to Invasion by the Legume Lespedeza cuneata

    Get PDF
    The spatial scale on which microbial communities respond to plant invasions may provide important clues as to the nature of potential invader–microbe interactions. Lespedeza cuneata (Dum. Cours.) G. Don is an invasive legume that may benefit from associations with mycorrhizal fungi; however, it has also been suggested that the plant is allelopathic and may alter the soil chemistry of invaded sites through secondary metabolites in its root exudates or litter. Thus, L. cuneata invasion may interact with soil microorganisms on a variety of scales. We investigated L. cuneata-related changes to soil bacterial and fungal communities at two spatial scales using multiple sites from across its invaded N. American range. Using whole-community DNA fingerprinting, we characterized microbial community variation at the scale of entire invaded sites and at the scale of individual plants. Based on permutational multivariate analysis of variance, soil bacterial communities in heavily invaded sites were significantly different from those of uninvaded sites, but bacteria did not show any evidence of responding at very local scales around individual plants. In contrast, soil fungi did not change significantly at the scale of entire sites, but there were significant differences between fungal communities of native versus exotic plants within particular sites. The differential scaling of bacterial and fungal responses indicates that L. cuneata interacts differently with soil bacteria and soil fungi, and these microorganisms may play very different roles in the invasion process of this plant

    Integrated System Test Approaches for the NASA Ares I Crew Launch Vehicle

    Get PDF
    The Ares I Crew Launch Vehicle (CLV) is being developed by the U.S. National Aeronautics and Space Administration (NASA) to provide crew access to the International Space Station (ISS) and, together with the Ares V Cargo Launch Vehicle (CaLV), serves as one component of a future launch capability for human exploration of the Moon. During the system requirements definition process and early design cycles, NASA defined and began implementing plans for integrated ground and flight testing necessary to achieve the first human launch of Ares I. The individual Ares I flight hardware elements: the first stage five segment booster (FSB), upper stage, and J-2X upper stage engine, will undergo extensive development, qualification, and certification testing prior to flight. Key integrated system tests include the Main Propulsion Test Article (MPTA), acceptance tests of the integrated upper stage and upper stage engine assembly, a full-scale integrated vehicle dynamic test (IVDT), aerodynamic testing to characterize vehicle performance, and integrated testing of the avionics and software components. The Ares I-X development flight test will provide flight data to validate engineering models for aerodynamic performance, stage separation, structural dynamic performance, and control system functionality. The Ares I-Y flight test will validate ascent performance of the first stage, stage separation functionality, and a highaltitude actuation of the launch abort system (LAS) following separation. The Orion-1 flight test will be conducted as a full, un-crewed, operational flight test through the entire ascent flight profile prior to the first crewed launch

    The effects of an experimental programme to support students’ autonomy on the overt behaviours of physical education teachers

    Get PDF
    Although the benefits of autonomy supportive behaviours are now well established in the literature, very few studies have attempted to train teachers to offer a greater autonomy support to their students. In fact, none of these studies has been carried out in physical education (PE). The purpose of this study is to test the effects of an autonomy-supportive training on overt behaviours of teaching among PE teachers. The experimental group included two PE teachers who were first educated on the benefits of an autonomy supportive style and then followed an individualised guidance programme during the 8 lessons of a teaching cycle. Their behaviours were observed and rated along 3 categories (i.e., autonomy supportive, neutral and controlling) and were subsequently compared to those of three teachers who formed the control condition. The results showed that teachers in the experimental group used more autonomy supportive and neutral behaviours than those in the control group, but no difference emerged in relation to controlling behaviours. We discuss the implications for schools of our findings

    COMPTEL observations of cosmic gamma‐ray bursts

    Get PDF
    The imaging γ‐ray telescope COMPTEL on board NASA’s Compton Gamma‐Ray Observatory (GRO) has observed many cosmic gamma‐ray bursts during the early mission phase of GRO. COMPTEL records time‐resolved burst spectra over 0.1 MeV to 10 MeV energies, and, for the first time, produces direct single‐telescope gamma‐ray images (0.8–30 MeV) of cosmic gamma‐ray bursts occurring in its 1 sr field of field

    Initial results from COMPTEL—an overview

    Get PDF
    COMPTEL is presently completing the first full sky survey in MeV gamma‐ray astronomy (0.7 to 30 MeV). An overview of initial results from the survey is given: among these are the observations of the Crab and Vela pulsars with unprecedented accuracy, the observation of the black hole candidates Cyg X‐1 and Nova Persei 1992, an analysis of the diffuse Galactic continuum emission from the Galactic center region, the broad scale distribution of the 1.8 MeV line from radioactive 2 6Al, upper limits on gamma‐ray line emission from SN 1991T, observations of the three quasars 3C273, 3C279 and PKS 0528+134 and the radio galaxy Cen A, measurements of energy spectra, time histories and locations of a number of cosmic gamma‐ray bursts, and gamma‐ray and neutron emission from solar flares

    Bounding the mass of the graviton using gravitional-wave observations of inspiralling compact binaries

    Get PDF
    If gravitation is propagated by a massive field, then the velocity of gravitational waves (gravitons) will depend upon their frequency and the effective Newtonian potential will have a Yukawa form. In the case of inspiralling compact binaries, gravitational waves emitted at low frequency early in the inspiral will travel slightly slower than those emitted at high frequency later, modifying the phase evolution of the observed inspiral gravitational waveform, similar to that caused by post-Newtonian corrections to quadrupole phasing. Matched filtering of the waveforms can bound such frequency-dependent variations in propagation speed, and thereby bound the graviton mass. The bound depends on the mass of the source and on noise characteristics of the detector, but is independent of the distance to the source, except for weak cosmological redshift effects. For observations of stellar-mass compact inspiral using ground-based interferometers of the LIGO/VIRGO type, the bound on the graviton Compton wavelength is of the order of 6×10126 \times 10^{12} km, about double that from solar-system tests of Yukawa modifications of Newtonian gravity. For observations of super-massive black hole binary inspiral at cosmological distances using the proposed laser interferometer space antenna (LISA), the bound can be as large as 6×10166 \times 10^{16} km. This is three orders of magnitude weaker than model-dependent bounds from galactic cluster dynamics.Comment: 8 pages, RevTeX, submitted to Phys. Rev.

    Introduction to COFFE: The Next-Generation HPCMP CREATE-AV CFD Solver

    Get PDF
    HPCMP CREATE-AV Conservative Field Finite Element (COFFE) is a modular, extensible, robust numerical solver for the Navier-Stokes equations that invokes modularity and extensibility from its first principles. COFFE implores a flexible, class-based hierarchy that provides a modular approach consisting of discretization, physics, parallelization, and linear algebra components. These components are developed with modern software engineering principles to ensure ease of uptake from a user's or developer's perspective. The Streamwise Upwind/Petrov-Galerkin (SU/PG) method is utilized to discretize the compressible Reynolds-Averaged Navier-Stokes (RANS) equations tightly coupled with a variety of turbulence models. The mathematics and the philosophy of the methodology that makes up COFFE are presented
    corecore