1,305 research outputs found

    Switches induced by quorum sensing in a model of enzyme-loaded microparticles

    Get PDF
    Quorum sensing refers to the ability of bacteria and other single-celled organisms to respond to changes in cell density or number with population-wide changes in behaviour. Here, simulations were performed to investigate quorum sensing in groups of diffusively coupled enzyme microparticles using a well-characterized autocatalytic reaction which raises the pH of the medium: hydrolysis of urea by urease. The enzyme urease is found in both plants and microorganisms, and has been widely exploited in engineering processes. We demonstrate how increases in group size can be used to achieve a sigmoidal switch in pH at high enzyme loading, oscillations in pH at intermediate enzyme loading and a bistable, hysteretic switch at low enzyme loading. Thus, quorum sensing can be exploited to obtain different types of response in the same system, depending on the enzyme concentration. The implications for microorganisms in colonies are discussed, and the results could help in the design of synthetic quorum sensing for biotechnology applications such as drug delivery

    Precision Imaging: more descriptive, predictive and integrative imaging

    Get PDF
    Medical image analysis has grown into a matured field challenged by progress made across all medical imaging technologies and more recent breakthroughs in biological imaging. The cross-fertilisation between medical image analysis, biomedical imaging physics and technology, and domain knowledge from medicine and biology has spurred a truly interdisciplinary effort that stretched outside the original boundaries of the disciplines that gave birth to this field and created stimulating and enriching synergies. Consideration on how the field has evolved and the experience of the work carried out over the last 15 years in our centre, has led us to envision a future emphasis of medical imaging in Precision Imaging. Precision Imaging is not a new discipline but rather a distinct emphasis in medical imaging borne at the cross-roads between, and unifying the efforts behind mechanistic and phenomenological modelbased imaging. It captures three main directions in the effort to deal with the information deluge in imaging sciences, and thus achieve wisdom from data, information, and knowledge. Precision Imaging is finally characterised by being descriptive, predictive and integrative about the imaged object. This paper provides a brief and personal perspective on how the field has evolved, summarises and formalises our vision of Precision Imaging for Precision Medicine, and highlights some connections with past research and current trends in the field

    Insights into collective cell behaviour from populations of coupled chemical oscillators.

    Get PDF
    Biological systems such as yeast show coordinated activity driven by chemical communication between cells. Here, we show how experiments with coupled chemical oscillators can provide insights into collective behaviour in cellular systems. Two methods of coupling the oscillators are described: exchange of chemical species with the surrounding solution and computer-controlled illumination of a light-sensitive catalyst. The collective behaviour observed includes synchronisation, dynamical quorum sensing (a density dependent transition to population-wide oscillations), and chimera states, where oscillators spontaneously split into coherent and incoherent groups. At the core of the different types of behaviour lies an intracellular autocatalytic signal and an intercellular communication mechanism that influences the autocatalytic growth

    Temporal Control of Gelation and Polymerization Fronts Driven by an Autocatalytic Enzyme Reaction

    Get PDF
    Chemical systems that remain kinetically dormant until activated have numerous applications in materials science. Herein we present a method for the control of gelation that exploits an inbuilt switch: the increase in pH after an induction period in the urease-catalyzed hydrolysis of urea was used to trigger the base-catalyzed Michael addition of a water-soluble trithiol to a polyethylene glycol diacrylate. The time to gelation (minutes to hours) was either preset through the initial concentrations or the reaction was initiated locally by a base, thus resulting in polymerization fronts that converted the mixture from a liquid into a gel (ca. 0.1 mm min−1). The rate of hydrolytic degradation of the hydrogel depended on the initial concentrations, thus resulting in a gel lifetime of hours to months. In this way, temporal programming of gelation was possible under mild conditions by using the output of an autocatalytic enzyme reaction to drive both the polymerization and subsequent degradation of a hydrogel

    Temporal Control of Gelation and Polymerization Fronts Driven by an Autocatalytic Enzyme Reaction

    Get PDF
    Chemical systems that remain kinetically dormant until activated have numerous applications in materials science. Herein we present a method for the control of gelation that exploits an inbuilt switch: the increase in pH after an induction period in the urease-catalyzed hydrolysis of urea was used to trigger the base-catalyzed Michael addition of a water-soluble trithiol to a polyethylene glycol diacrylate. The time to gelation (minutes to hours) was either preset through the initial concentrations or the reaction was initiated locally by a base, thus resulting in polymerization fronts that converted the mixture from a liquid into a gel (ca. 0.1 mm min−1). The rate of hydrolytic degradation of the hydrogel depended on the initial concentrations, thus resulting in a gel lifetime of hours to months. In this way, temporal programming of gelation was possible under mild conditions by using the output of an autocatalytic enzyme reaction to drive both the polymerization and subsequent degradation of a hydrogel

    Inward propagating chemical waves in Taylor vortices

    Get PDF
    Advection-reaction-diffusion (ARD) waves in the Belousov-Zhabotinsky reaction in steady Taylor-Couette vortices have been visualized using magnetic-resonance imaging and simulated using an adapted Oregonator model. We show how propagating wave behavior depends on the ratio of advective, chemical and diffusive time scales. In simulations, inward propagating spiral flamelets are observed at high Damköhler number (Da). At low Da, the reaction distributes itself over several vortices and then propagates inwards as contracting ring pulses—also observed experimentally

    Periodic nucleation of calcium phosphate in a stirred biocatalytic reaction

    Get PDF
    Highly ordered superstructures composed of inorganic nanoparticles appear in natural and synthetic systems, however the mechanisms of non‐equilibrium self‐organization that may be involved are still poorly understood. Herein, we performed a kinetic investigation of the precipitation of calcium phosphate using a process widely found in microorganisms: the hydrolysis of urea by enzyme urease. With high initial ratio of calcium ion to phosphate, periodic precipitation was obtained accompanied by pH oscillations in a well‐stirred, closed reactor. We propose that an internal pH‐regulated change in the concentration of phosphate ion is the driving force for periodicity. A simple model involving the biocatalytic reaction network coupled with burst nucleation of nanoparticles above a critical supersaturation reproduced key features of the experiments. These findings may provide insight to the self‐organization of nanoparticles in biomineralization and improve design strategies of biomaterials for medical applications

    Influence of oxygen on chemoconvective patterns in the iodine clock reaction

    Get PDF
    There is increasing interest in using chemical clock reactions to drive material formation; however, these reactions are often subject to chemoconvective effects, and control of such systems remains challenging. Here, we show how the transfer of oxygen at the air–water interface plays a crucial role in the spatiotemporal behavior of the iodine clock reaction with sulfite. A kinetic model was developed to demonstrate how the reaction of oxygen with sulfite can control a switch from a low-iodine to high-iodine state under well-stirred conditions and drive the formation of transient iodine gradients in unstirred solutions. In experiments in thin layers with optimal depths, the reaction couples with convective instability at the air–water interface forming an extended network-like structure of iodine at the surface that develops into a spotted pattern at the base of the layer. Thus, oxygen drives the spatial separation of iodine states essential for patterns in this system and may influence pattern selection in other clock reaction systems with sulfite

    A microfluidic double emulsion platform for spatiotemporal control of pH and particle synthesis

    Get PDF
    The temporal control of pH in microreactors such as emulsion droplets plays a vital role in applications including biomineralisation and microparticle synthesis. Typically, pH changes are achieved either by passive diffusion of species into a droplet or by acid/base producing reactions. Here, we exploit an enzyme reaction combined with the properties of a water–oil–water (W/O/W) double emulsion to control the pH–time profile in the droplets. A microfluidic platform was used for production of ∌100–200 ÎŒm urease-encapsulated double emulsions with a tuneable mineral oil shell thickness of 10–40 ÎŒm. The reaction was initiated on-demand by addition of urea and a pulse in base (ammonia) up to pH 8 was observed in the droplets after a time lag of the order of minutes. The pH–time profile can be manipulated by the diffusion timescale of urea and ammonia through the oil layer, resulting in a steady state pH not observed in bulk reactive solutions. This approach may be used to regulate the formation of pH sensitive materials under mild conditions and, as a proof of concept, the reaction was coupled to calcium phosphate precipitation in the droplets. The oil shell thickness was varied to select for either brushite microplatelets or hydroxyapatite particles, compared to the mixture of different precipitates obtained in bulk

    A novel high-throughput ex vivo ovine skin wound model for testing emerging antibiotics

    Get PDF
    The development of antimicrobials is an expensive process with increasingly low success rates, which makes further investment in antimicrobial discovery research less attractive. Antimicrobial drug discovery and subsequent commercialization can be made more lucrative if a fail-fast-and-fail-cheap approach can be implemented within the lead optimization stages where researchers have greater control over drug design and formulation. In this article, the setup of an ex vivo ovine wounded skin model infected with Staphylococcus aureus is described, which is simple, cost-effective, high throughput, and reproducible. The bacterial physiology in the model mimics that during infection as bacterial proliferation is dependent on the pathogen's ability to damage the tissue. The establishment of wound infection is verified by an increase in viable bacterial counts compared to the inoculum. This model can be used as a platform to test the efficacy of emerging antimicrobials in the lead optimization stage. It can be contended that the availability of this model will provide researchers developing antimicrobials with a fail-fast-and-fail-cheap model, which will help increase success rates in subsequent animal trials. The model will also facilitate the reduction and refinement of animal use for research and ultimately enable faster and more cost-effective translation of novel antimicrobials for skin and soft tissue infections to the clinic
    • 

    corecore