24,392 research outputs found

    Initial thoughts on rapid prototyping techniques

    Get PDF
    This paper sets some context, raises issues, and provides our initial thinking on the characteristics of effective rapid prototyping techniques.After discussing the role rapid prototyping techniques can play in the software lifecycle, the paper looks at possible technical approaches including: heavily parameterized models, reusable software, rapid prototyping languages, prefabrication techniques for system generation, and reconfigurable test harnesses.The paper concludes that a multi-faceted approach to rapid prototyping techniques is needed if we are to address a broad range of applications successfully -- no single technical approach suffices for all potentially desirable applications

    Measurements of Heat-Transfer and Friction Coefficients for Helium Flowing in a Tube at Surface Temperatures up to 5900 Deg R

    Get PDF
    Measurements of average heat transfer and friction coefficients and local heat transfer coefficients were made with helium flowing through electrically heated smooth tubes with length-diameter ratios of 60 and 92 for the following range of conditions: Average surface temperature from 1457 to 4533 R, Reynolds numbe r from 3230 to 60,000, heat flux up to 583,200 Btu per hr per ft2 of heat transfer area, and exit Mach numbe r up to 1.0. The results indicate that, in the turbulent range of Reynolds number, good correlation of the local heat transfer coefficients is obtained when the physical properties and density of helium are evaluated at the surface temperature. The average heat transfer coefficients are best correlated on the basis that the coefficient varies with [1 + (L/D))(sup -0,7)] and that the physical properties and density are evaluated at the surface temperature. The average friction coefficients for the tests with no heat addition are in complete agreement with the Karman-Nikuradse line. The average friction coefficients for heat addition are in poor agreement with the accepted line

    Embedded density functional theory for covalently bonded and strongly interacting subsystems

    Get PDF
    Embedded density functional theory (e-DFT) is used to describe the electronic structure of strongly interacting molecular subsystems. We present a general implementation of the Exact Embedding (EE) method [J. Chem. Phys. 133, 084103 (2010)] to calculate the large contributions of the nonadditive kinetic potential (NAKP) in such applications. Potential energy curves are computed for the dissociation of Li^+–Be, CH_3–CF_3, and hydrogen-bonded water clusters, and e-DFT results obtained using the EE method are compared with those obtained using approximate kinetic energy functionals. In all cases, the EE method preserves excellent agreement with reference Kohn–Sham calculations, whereas the approximate functionals lead to qualitative failures in the calculated energies and equilibrium structures. We also demonstrate an accurate pairwise approximation to the NAKP that allows for efficient parallelization of the EE method in large systems; benchmark calculations on molecular crystals reveal ideal, size-independent scaling of wall-clock time with increasing system size

    Density functional theory embedding for correlated wavefunctions: Improved methods for open-shell systems and transition metal complexes

    Full text link
    Density functional theory (DFT) embedding provides a formally exact framework for interfacing correlated wave-function theory (WFT) methods with lower-level descriptions of electronic structure. Here, we report techniques to improve the accuracy and stability of WFT-in-DFT embedding calculations. In particular, we develop spin-dependent embedding potentials in both restricted and unrestricted orbital formulations to enable WFT-in-DFT embedding for open-shell systems, and we develop an orbital-occupation-freezing technique to improve the convergence of optimized effective potential (OEP) calculations that arise in the evaluation of the embedding potential. The new techniques are demonstrated in applications to the van-der-Waals-bound ethylene-propylene dimer and to the hexaaquairon(II) transition-metal cation. Calculation of the dissociation curve for the ethylene-propylene dimer reveals that WFT-in-DFT embedding reproduces full CCSD(T) energies to within 0.1 kcal/mol at all distances, eliminating errors in the dispersion interactions due to conventional exchange-correlation (XC) functionals while simultaneously avoiding errors due to subsystem partitioning across covalent bonds. Application of WFT-in-DFT embedding to the calculation of the low-spin/high-spin splitting energy in the hexaaquairon(II) cation reveals that the majority of the dependence on the DFT XC functional can be eliminated by treating only the single transition-metal atom at the WFT level; furthermore, these calculations demonstrate the substantial effects of open-shell contributions to the embedding potential, and they suggest that restricted open-shell WFT-in-DFT embedding provides better accuracy than unrestricted open-shell WFT-in-DFT embedding due to the removal of spin contamination.Comment: 11 pages, 5 figures, 2 table

    1861-04-25 Thomas A. Taylor forwards the recruitment roll of Captain Emerson

    Get PDF
    https://digitalmaine.com/cw_me_2nd_regiment_corr/1004/thumbnail.jp

    From Markovian to pairwise epidemic models and the performance of moment closure approximations

    Get PDF
    Many if not all models of disease transmission on networks can be linked to the exact state-based Markovian formulation. However the large number of equations for any system of realistic size limits their applicability to small populations. As a result, most modelling work relies on simulation and pairwise models. In this paper, for a simple SIS dynamics on an arbitrary network, we formalise the link between a well known pairwise model and the exact Markovian formulation. This involves the rigorous derivation of the exact ODE model at the level of pairs in terms of the expected number of pairs and triples. The exact system is then closed using two different closures, one well established and one that has been recently proposed. A new interpretation of both closures is presented, which explains several of their previously observed properties. The closed dynamical systems are solved numerically and the results are compared to output from individual-based stochastic simulations. This is done for a range of networks with the same average degree and clustering coefficient but generated using different algorithms. It is shown that the ability of the pairwise system to accurately model an epidemic is fundamentally dependent on the underlying large-scale network structure. We show that the existing pairwise models are a good fit for certain types of network but have to be used with caution as higher-order network structures may compromise their effectiveness

    Cuticular Features and Epidermal Patterns in the Genus Araucaria de Jussieu

    Get PDF
    This is the publisher's version, also available electronically from http://www.jstor.org.The cuticular organization and epidermal features of le aves from the four sections of the genus Araucaria, growing under similar environmental conditions, were studied by scanning electron microscopy. Cuticles from these extant species and the Jurassic fossil Araucarites santaecrucis were compared by rubber replicas and examination of the fossil leaf surfaces. Two distinct groups of araucarian leaves are distinguished by cuticular features. The Columbea-Bunya species have regular stomatal rows with polar cells always oriented in the same direction, four to five subsidiary cells, and a granular inner cuticle surface on both epidermal and subsidiary cells. The Eutacta-Intermedia species have four to seven subsidiary cells with thin cuticular flanges between guard cells and subsidiary cells, a smooth inner cuticular surface on both epidermal and subsidiary cells, and thinner intercellular flanges on epidermal cell walls. Epidermal features of a raucarian leaves appear to be taxonomically useful at the section level

    Telangiopsis Gen. Nov., an Upper Mississippian Pollen Organ from Arkansas

    Get PDF
    This is the publisher's version, also available electronically from www.jstor.org.Telangiopsis arkansanum is described from compressed synangiate pollen organs borne terminally on a monopodially branched system of slender axes. The specimens occur in a fine-grained shale unit of the Wedington sandstone (Chester series). Individual synangia contain five or six sporangia, measure approximately 1.0 mm long and 0.8 mm wide, and contain radial trilete spores ranging from 47 to 54 n in diameter. A discussion of the genus Telangium, to which similar remains would have previously been assigned, is presented. The generic name Telangium is retained for the petrified species T. scotti and T. pygmaeum, while the generic name Telangiopsis is proposed to include nonpetrifaction specimens previously assigned to the genus
    • …
    corecore