147 research outputs found

    Cardiorespiratory Progression Over 5 Years and Role of Corticosteroids in Duchenne Muscular Dystrophy: A Single-Site Retrospective Longitudinal Study

    Get PDF
    Background: Duchenne muscular dystrophy (DMD) boys treated with corticosteroids (CS) have prolonged survival and respiratory function when compared to CS-naïve. /\ud Research question: The differential impact of frequently used corticosteroids and their regimens on long-term (>5 years) cardiorespiratory progression in DMD children is unknown. / Study Design and Methods: Retrospective longitudinal study including DMD children followed at Dubowitz Neuromuscular Centre (Great Ormond Street Hospital London), May 2000-June 2017. Patients enrolled in any interventional clinical trials were excluded. We collected patients’ anthropometrics, respiratory (forced vital capacity, FVC% predicted and absolute FVC, non-invasive ventilation requirement, NIV) and cardiac (left ventricular shortening function, LVFS%) function. CS-naïve patients had never received CS. CS-treated took either deflazacort or prednisolone, daily or intermittently (10 days on/10 days off) for >1 month. Average longitudinal models were fitted for yearly respiratory (FVC%P) and cardiac (LVFS%) progression. A time-to-event analysis to FVC%P<50%, NIV start and cardiomyopathy (LVFS<28%) was performed in CS-treated (daily and intermittent) vs CS-naïve patients. / Results: There were 270 patients, mean age at baseline 6.2 (±2.3) years. Median follow-up 5.6 (± 3.5) years. At baseline, 263 were ambulant. Sixty-six were CS-daily, 182 CS-intermittent >60% treatment, 22 CS-naïve. Yearly FVC%P declined similarly from 9 years (5.9% and 6.9%/year, p=0.27) in CS-daily and CS-intermittent. CS-daily declined from a higher FVC%P than CS-intermittent (p2 years later than CS-treated. LVFS% declined by 0.53%/year in CS-treated irrespective of CS regimen, significantly slower (p<0.01) than CS-naïve progressing by 1.17%/year. Age at cardiomyopathy was 16.6 in CS-treated (p<0.05) irrespective of regimen and 13.9 years in CS-naïve. / Interpretation: CS irrespective of their regimen significantly improved respiratory function and delayed NIV requirement and cardiomyopathy

    Genomic and epigenomic EBF1 alterations modulate TERT expression in gastric cancer

    Get PDF
    Transcriptional reactivation of telomerase catalytic subunit (TERT) is a frequent hallmark of cancer, occurring in 90% of human malignancies. However, specific mechanisms driving TERT reactivation remain obscure for many tumor types and in particular gastric cancer (GC), a leading cause of global cancer mortality. Here, through comprehensive genomic and epigenomic analysis of primary GCs and GC cell lines, we identified the transcription factor early B cell factor 1 (EBF1) as a TERT transcriptional repressor and inactivation of EBF1 function as a major cause of TERT upregulation. Abolishment of EBF1 function occurs through 3 distinct (epi)genomic mechanisms. First, EBF1 is epigenetically silenced via DNA methyltransferase, polycomb-repressive complex 2 (PRC2), and histone deacetylase activity in GCs. Second, recurrent, somatic, and heterozygous EBF1 DNA–binding domain mutations result in the production of dominant-negative EBF1 isoforms. Third, more rarely, genomic deletions and rearrangements proximal to the TERT promoter remobilize or abolish EBF1-binding sites, derepressing TERT and leading to high TERT expression. EBF1 is also functionally required for various malignant phenotypes in vitro and in vivo, highlighting its importance for GC development. These results indicate that multimodal genomic and epigenomic alterations underpin TERT reactivation in GC, converging on transcriptional repressors such as EBF1

    Contrasting Spatial Distribution and Risk Factors for Past Infection with Scrub Typhus and Murine Typhus in Vientiane City, Lao PDR

    Get PDF
    Scrub typhus and murine typhus are neglected but important treatable causes of fever, morbidity and mortality in South-East Asia. Epidemiological data suggests that scrub typhus would be more common in rural areas and murine typhus in urban areas but there are very few comparative data from places where both diseases occur, as is the case in Vientiane, the capital of the Lao PDR. We therefore determined the frequency of IgG antibody seropositivity against scrub typhus and murine typhus, as indices of prior exposure to these pathogens, in a randomly selected population of 2,002 adults living in different neighbourhoods in Vientiane. The overall prevalence of IgG against these two pathogens was ∼20%. However, within the city, the spatial distribution of IgG against these two diseases was radically different - past exposure to murine typhus being more frequent in urbanized areas while past exposure to scrub typhus more frequent in outlying areas. This study underscores the importance of ecological characteristics in improving the understanding of both scrub typhus and murine typhus transmission and epidemiology

    High-Throughput Functional MicroRNAs Profiling by Recombinant AAV-Based MicroRNA Sensor Arrays

    Get PDF
    BACKGROUND: microRNAs (miRNAs) are small and non-coding RNAs which play critical roles in physiological and pathological processes. A number of methods have been established to detect and quantify miRNA expression. However, method for high-throughput miRNA function detection is still lacking. PRINCIPAL FINDINGS: We describe an adeno-associated virus (AAV) vector-based microRNA (miRNA) sensor (Asensor) array for high-throughput functional miRNA profiling. Each Asensor contains a Gaussia luciferase (Gluc) and a firefly luciferase (Fluc) expression cassette to sense functional miRNA and to serve as an internal control respectively. Using this array, we acquired functional profiles of 115 miRNAs for 12 cell lines and found "functional miRNA signatures" for several specific cell lines. The activities of specific miRNAs including the let-7 family, miR-17-92 cluster, miR-221, and miR-222 in HEK 293 cells were compared with their expression levels determined by quantitative reverse transcriptase polymerase chain reaction (QRT-PCR). We also demonstrate two other practical applications of the array, including a comparison of the miRNA activity between HEK293 and HEK293T cells and the ability to monitor miRNA activity changes in K562 cells treated with 12-O-tetradecanoylphorbol-13-acetate (TPA). CONCLUSIONS/SIGNIFICANCE: Our approach has potential applications in the identification of cell types, the characterization of biological and pathological processes, and the evaluation of responses to interventions

    Gene Regulation in Giardia lambia Involves a Putative MicroRNA Derived from a Small Nucleolar RNA

    Get PDF
    Two core microRNA (miRNA) pathway proteins, Dicer and Argonaute, are found in Giardia lamblia, a deeply branching parasitic protozoan. There are, however, no apparent homologues of Drosha or Exportin5 in the genome. Here, we report a 26 nucleotide (nt) RNA derived from a 106 nt Box C/D snoRNA, GlsR2. This small RNA, designated miR5, localizes to the 3′ end of GlsR2 and has a 75 nt hairpin precursor. GlsR2 is processed by the Dicer from Giardia (GlDcr) and generated miR5. Immunoprecipitation of the Argonaute from Giardia (GlAgo) brought down miR5. When a Renilla Luciferase transcript with a 26 nt miR5 antisense sequence at the 3′-untranslated region (3′ UTR) was introduced into Giardia trophozoites, Luciferase expression was reduced ∼25% when synthetic miR5 was also introduced. The Luciferase mRNA level remained, however, unchanged, suggesting translation repression by miR5. This inhibition was fully reversed by introducing also a 2′-O-methylated antisense inhibitor of miR5, suggesting that miR5 acts by interacting specifically with the antisense sequence in the mRNA. A partial antisense knock down of GlDcr or GlAgo in Giardia indicated that the former is needed for miR5 biogenesis whereas the latter is required for miR5-mediated translational repression. Potential targets for miR5 with canonical seed sequences were predicted bioinformatically near the stop codon of Giardia mRNAs. Four out of the 21 most likely targets were tested in the Luciferase reporter assay. miR5 was found to inhibit Luciferase expression (∼20%) of transcripts carrying these potential target sites, indicating that snoRNA-derived miRNA can regulate the expression of multiple genes in Giardia

    Multiplexing information flow through dynamic signalling systems

    Get PDF
    We consider how a signalling system can act as an information hub by multiplexing information arising from multiple signals. We formally define multiplexing, mathematically characterise which systems can multiplex and how well they can do it. While the results of this paper are theoretical, to motivate the idea of multiplexing, we provide experimental evidence that tentatively suggests that the NF-κB transcription factor can multiplex information about changes in multiple signals. We believe that our theoretical results may resolve the apparent paradox of how a system like NF-κB that regulates cell fate and inflammatory signalling in response to diverse stimuli can appear to have the low information carrying capacity suggested by recent studies on scalar signals. In carrying out our study, we introduce new methods for the analysis of large, nonlinear stochastic dynamic models, and develop computational algorithms that facilitate the calculation of fundamental constructs of information theory such as Kullback–Leibler divergences and sensitivity matrices, and link these methods to a new theory about multiplexing information. We show that many current models such as those of the NF-κB system cannot multiplex effectively and provide models that overcome this limitation using post-transcriptional modifications

    α-Synuclein Expression Selectively Affects Tumorigenesis in Mice Modeling Parkinson's Disease

    Get PDF
    Alpha Synuclein (α-Syn) is a protein implicated in mechanisms of neuronal degeneration in Parkinson's disease (PD). α-Syn is primarily a neuronal protein, however, its expression is found in various tumors including ovarian, colorectal and melanoma tumors. It has been hypothesized that neurodegeneration may share common mechanisms with oncogenesis. We tested whether α-Syn expression affects tumorigenesis of three types of tumors. Specifically, B16 melanoma, E0771 mammary gland adenocarcinoma and D122 Lewis lung carcinoma. For this aim, we utilized transgenic mice expression the human A53T α-Syn form. We found that the in vivo growth of B16 and E0771 but not D122 was enhanced in the A53T α-Syn mice. The effect on tumorigenesis was not detected in age-matched APP/PS1 mice, modeling Alzheimer's disease (AD), suggesting a specific effect for α-Syn- dependent neurodegeneration. Importantly, transgenic α-Syn expression was detected within the three tumor types. We further show uptake of exogenously added, purified α-Syn, by the cultured tumor cells. In accord, with the affected tumorigenesis in the young A53T α-Syn mice, over- expression of α-Syn in cultured B16 and E0771 cells enhanced proliferation, however, had no effect on the proliferation of D122 cells. Based on these results, we suggest that certain forms of α-Syn may selectively accelerate cellular mechanisms leading to cancer

    Zebrafish: a vertebrate tool for studying basal body biogenesis, structure, and function.

    Get PDF
    Understanding the role of basal bodies (BBs) during development and disease has been largely overshadowed by research into the function of the cilium. Although these two organelles are closely associated, they have specific roles to complete for successful cellular development. Appropriate development and function of the BB are fundamental for cilia function. Indeed, there are a growing number of human genetic diseases affecting ciliary development, known collectively as the ciliopathies. Accumulating evidence suggests that BBs establish cell polarity, direct ciliogenesis, and provide docking sites for proteins required within the ciliary axoneme. Major contributions to our knowledge of BB structure and function have been provided by studies in flagellated or ciliated unicellular eukaryotic organisms, specifically Tetrahymena and Chlamydomonas. Reproducing these and other findings in vertebrates has required animal in vivo models. Zebrafish have fast become one of the primary organisms of choice for modeling vertebrate functional genetics. Rapid ex-utero development, proficient egg laying, ease of genetic manipulation, and affordability make zebrafish an attractive vertebrate research tool. Furthermore, zebrafish share over 80 % of disease causing genes with humans. In this article, we discuss the merits of using zebrafish to study BB functional genetics, review current knowledge of zebrafish BB ultrastructure and mechanisms of function, and consider the outlook for future zebrafish-based BB studies

    Uncovering the multifaceted roles played by neutrophils in allogeneic hematopoietic stem cell transplantation

    Get PDF
    Allogeneic hematopoietic stem cell transplantation (alloHSCT) is a life-saving procedure used for the treatment of selected hematological malignancies, inborn errors of metabolism, and bone marrow failures. The role of neutrophils in alloHSCT has been traditionally evaluated only in the context of their ability to act as a first line of defense against infection. However, recent evidence has highlighted neutrophils as key effectors of innate and adaptive immune responses through a wide array of newly discovered functions. Accordingly, neutrophils are emerging as highly versatile cells that are able to acquire different, often opposite, functional capacities depending on the microenvironment and their differentiation status. Herein, we review the current knowledge on the multiple functions that neutrophils exhibit through the different stages of alloHSCT, from the hematopoietic stem cell (HSC) mobilization in the donor to the immunological reconstitution that occurs in the recipient following HSC infusion. We also discuss the influence exerted on neutrophils by the immunosuppressive drugs delivered in the course of alloHSCT as part of graft-versus-host disease (GVHD) prophylaxis. Finally, the potential involvement of neutrophils in alloHSCT-related complications, such as transplant-associated thrombotic microangiopathy (TA-TMA), acute and chronic GVHD, and cytomegalovirus (CMV) reactivation, is also discussed. Based on the data reviewed herein, the role played by neutrophils in alloHSCT is far greater than a simple antimicrobial role. However, much remains to be investigated in terms of the potential functions that neutrophils might exert during a highly complex procedure such as alloHSCT
    corecore